˜_•¶ˆê——
@”ŽŽm˜_•¶‹y‚Ñ’¼‹ß8”NŠÔ•ª‚ÌCŽm˜_•¶E‘²‹Æ˜_•¶‚̃^ƒCƒgƒ‹‹y‚Ñ’˜ŽÒ‚ðЉ‚Ü‚·B
  • ‘qã OK
    On decompositions of symmetry for ordinal contingency tables
  • ¶‹T ´‹M
    Orthogonal decompositions and measure of models for analysis of contingency tables
  • ŽR–{ hŽi
    Decompositions of Model and Measure for Analysis of Square Contingency Tables
  • “c”¨ kŽ¡
    Modeling and decompositions of various symmetry for categorical data analysis
  • ŽR–{ ‰p°
    Measures and decompositions of symmetry model for multi-way contingency tables
  • ˆ¢“à —É•½
    On decomposition of improved estimator of measure for symmetry in square contingency tables
  • –¾‰i x—C
    Measure of departure from symmetry based on entropy for square contingency tables
  • “V–ì Š°”V
    Extended marginal homogeneity model for square contingency tables
  • ]Œ´ ’
    Proposal for improvement of approximate unbiased estimator of the log odds ratio
  • ‘å•l вŠó
    Decompositions of symmetry using generalized linear diagonals-parameter symmetry model and orthogonality for square contingency tables with ordered categories
  • ¬“c „Žm
    A modi ed palindromic symmetry model and decomposition of symmetry for square contingency tables with ordered categories
  • ¬o —z•½
    Correlation between two types of scales to measure the distance from the symmetry
  • ŽOŽ} —S•ã
    An extended asymmetry model and decompositions of symmetry for square contingency tables
  • “‡“c •¶
    Measure of departure from symmetry for the alalysis of collapsed square contingency tables with ordered categories
  • “c’† –í¶
    Sum-symmetry model and its orthogonal decomposition for square contingency tables having ordered categories
  • ’†–{ «Ži
    Decomposition of diamond model for square contingency tables with ordered categories
  • “¡‘º W—m
    Incomplete polynomial diagonals-parameter symmetry model for square contingency tables
  • –{“c “N•j
    Measure of departure from point-symmetry for two-way contingency tables with ordered categories
  • ‘O“c sŽu
    Wald test statistic of generalized marginal homogeneity model for square contingency tables
  • ÎŒ´ ‘ñ–
    Bivariate t-distribution type symmetry model for ordered square contingency tables
  • ìè ‹¦
    Asymmetry measure on marginal homogeneity for square contingency tables with ordered categories
  • ‹e’r G˜a
    Improved power-divergence type measure of departure from diagonals-parameter symmetry for square contingency tables with ordered categories
  • Vé —Ì‘¾
    Improved index of departure from extended marginal homogeneity in square contigency tables
  • —é–Ø ‰ël
    Incomplete marginal homogeneity model for square contingency tables
  • ŠÖŒû ˜aÆ
    Local subsymmetry models for square contingency tables with ordered categories
  • ŠÖ’J —C‘¾
    Improved measure of departure from extended marginal homogeneity for square contingency tables with ordered categories
  • “c’† —m”V
    Improved approximate unbiased estimators of measures of marginal homogeneity for square contingency tables
  • ’†–ì ^“o
    Wald test statistic for cumulative diagonals-parameter symmetry model in square contingency tables
  • áÁ“ˆ Œ’‘¾˜Y
    Distance measure of departure from cumulative linear diagonals-parameter symmetry for square contingency tables with ordered categories
  • ‘ºã ãÄ‘¾
    Point-symmetry models and decomposition for collapsed square contingency tables
  • ‹g“c ‰p—¢
    On measure of proportional reduction in error for two-way contingency tables with ordinal categories
  • ]’Ë Í•¶
    Generalized measure of departure from conditional symmetry for square contingency tables with ordered categories
  • ‰Í‡ —T–ç
    Decompositions of polynomial parameter-symmetry models for square contingency tables with ordered categories
  • ‹àŒ´ ‹B“T
    Distance measure of departure from marginal homogeneity for contingency tables with nominal categories
  • ¼ Œ[Œá
    Decomposition of measures of quasi-symmetry for square contingency tables
  • ŽÂ“c Šo
    Extensions of marginal homogeneity model and decompositions for ordinal quasi-symmetry model in square contingency tables with ordered categories
  • ŠÑˆä а‹I
    Decomposition of point-symmetry using information theoretic approach in square contingency tables
  • –ìè —T—
    Measure on proportional reduction in error for multi-way contingency tables with an ordinal response
  • ‹g–{ ‘ñ–î
    Measure for marginal homogeneity and marginal asymmetry model in square tables with ordered categories
  • ˆÀ“¡ @Ži
    Extended ridit score type quasi-symmetry model and decomposition of symmetry for square contingency tables
  • ˆäã ‹M”Ž
    Expected mean squared error for some symmetry models in three-way contingency tables
  • ‰|–{ Œ‹ˆß
    On measure of departure from marginal homogeneity for square contingency tables with nominal categories
  • ¬¼ ³–¾
    Measure of departure from double-symmetry for square tables
  • “cŒû —z‰î
    Incomplete double symmetry model for square contingency tables
  • ‰H“c “¿¬
    Masure of departure from marginal point-symmetry for three-way contingency tables
  • ‘‘º ˆê•ä
    Improvement of measures for marginal homogeneity in square contingency tables
  • ¼‘º —D
    On test of quasi point symmetry for square contingency tables
  • ‹{àV Œõ‘¾
    Measure of departure from average cumulative symmetry for square tables having ordinal categories
  • ‘º£ Œ[•ã
    On distance measure of departure from symmetry for multi-way contingency tables
  • ¶‹T ´‹M
    Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories
  • ‰Á“¡ ‹MŽj
    A measure of departure from diagonals-parameter symmetry and its application for square contingency tables
  • ìè —m—S
    Improved measure of departure from point-symmetry for two-way contingency tables
  • —é–Ø Œ³Žq
    Measure of departure from marginal point-symmetry for two-way contingency tables
  • ‚‹´ •¶”Ž
    Double symmetry model and its orthogonal decomposition for multi-Way tables
  • “¿–ì ”Ž‹M
    Wald test statistic for marginal point-symmetry model for multi-way contingency tables
  • •y“c ‘l
    Distance measure of departure from quasi-symmetry and bradley-terry model for square contingency tables with nominal categories
  • •Ÿ“c ^l
    Distance measure of departure from symmetry for square contingency tables with ordered categories
  • –x ‹œŽŸ
    Extension of measure for no three-factor interaction model in three-way contingency tables
  • “’ó rÍ
    Modified point symmetry model for square contingency tables
  • ¡ˆä аl
    Orthogonal decomposition of symmetry into conditional and global symmetry for three-way contingency tables with ordered categories
  • ¬“‡ —Û
    The decompositions for the symmetry and conditional symmetry models in square contingency tables
  • ‰–“c ’¼l
    Test of homogeneity for measure of departure from symmetry in square contingency tables
  • ’Øˆä ®l
    Distance measure of departure from symmetry for square contingency tables with nominal categories
  • –L“c ‹ªŒ÷
    The delta symmetry model and its applications
  • ‰i’J “T”V
    A measure of departure from average symmetry for square contingency tables with ordered categories
  • –쑺 Œ«Ži
    Equivalence test of measures of departure from marginal homogeneity for r ~ r tables
  • ‰H’¹ –¾“ú‰À
    Measures of departure from collapsed symmetry for multi-way contingency tables
  • ¬“‡ ’qº
    A new measure based on sensitivity and specificity
  • ”· —m•½
    Generalized measure of departure from no three-factor interaction model for 2 ~ 2 ~ K contingency tables
  • •ŸŽi „Žj
    A generalization of measure of departure from uniform association in two-way contingency tables
  • –Ñ—˜ ‘å‹I
    A measure of departure from diagonals-parameter symmetry model for square contingency tables
  • ŽR“c ÍŽj
    Generalized measures of departure from symmetry for square contingency tables
  • ‘qã OK
    Contaminated normal type symmetry model and decomposition of symmetry for square contingency tables
  • ¬—Ñ LŽk
    Conditional marginal cumulative logistic models and decomposition of marginal homogeneity model for multi-way tables
  • ù“‡ —²‹`
    Expected mean squared error of estimators for symmetry and asymmetry models for contingency tables
  • ûü‘ò ãÄ
    Collapsed symmetry model and its decomposition for multi-way tables with ordered categories
  • •x—¢ —É‘¾
    An improved approximate unbiased estimator of log-odds ratio for 2~2 contingency tables
  • Šâ–{ ä—¢
    Linear column-parameter symmetry model for square contingency tables: application to decayed teeth data
  • ‘åê ‹I²
    Improved approximate unbiased estimators of measures of asymmetry for square contingency tables
  • •Бq TŒá
    Decompositions of marginal homogeneity model using cumulative logistic models for multi-way contingency tables
  • ŒIŒ´ —Ç•½
    Improved measure of symmetry for square contingency tables with ordered categories
  • “c“ˆ K¹
    A measures of asymmetry of marginal ridits for square contingency tables with ordered categories
  • “c‘º Œ’
    Generalized measure of association for contingency tables
  • ’†“ˆ —Dˆê
    Improvement of power-divergence-type measure of departure from symmetry and comparison of speeds of normal approximation
  • ŒÃ’J ‚ä‚©‚è
    Measure of departure from extended marginal homogeneity for square contingency tables with ordered categories
  • ‘ŠàV ˆ¤“Þ
    Š´õÇ—¬s‚Æ‘å‹CŠÂ‹«‚ÌŠÖ˜A‚Ì“Œv‰ðÍ
  • Ô–x ^Ži
    ŽÀ‰Æ•é‚炵Eˆêl•é‚炵‚ð‚·‚é‘åŠw¶‚Ìe‚ɑ΂·‚éˆÓޝ‰ðÍ
  • –ƒ¶ ‰hŽ÷
    ƒ[ƒJƒ‹ƒq[ƒ[‚ÌŒ`‘Ԃ̕ϑJ‚ÉŠÖ‚·‚é‰ðÍ
  • ’r‹T —Ú—¢Žq
    Šw¶‚̃Aƒ‹ƒR[ƒ‹šnD‚ÉŠÖ‚·‚铌v‰ðÍ
  • “àŽR žx
    ƒJƒ‰ƒIƒP“X‘I‚т̊ϓ_•Êd—v“x‚̉ðÍ
  • ‘å‹v•Û ]—¢Žq
    —U“±‚É‚æ‚éˆÓŒ©‚̕΂è‚â‚·‚³‚Ì’²¸
  • ‘åŽR ’qŠî
    “Œ‹žƒIƒŠƒ“ƒsƒbƒN‚ÉŠÖ‚·‚éˆÓޝ’²¸
  • Š|ŽD ƒ•½
    ‰~ˆÀ‚ÉÅ“_‚ð“–‚Ä‚½‘åŠw¶‚ÌŒoςɊւ·‚éˆÓޝ’²¸
  • ‰Á“¡ ç‰l
    •ê‚Ì“úE•ƒ‚Ì“ú‚ɑ΂·‚éˆÓޝ’²¸
  • a’J –¾
    ˆê‘ΔäŠr–@‚É‚æ‚éJ ƒŠ[ƒOƒNƒ‰ƒu‚̉ðÍ
  • ´… —F‹K
    Ž©“®ŽÔ•’Ê–Æ‹–‚ÉŠÖ‚·‚铌v‰ðÍ
  • {“¡ F_
    ˆêlÌ•\Œ»‚Ì‚½‚߂̫Ši‹y‚ÑŒZ’í\¬‚ª—^‚¦‚é“Á’¥‚Ì“Œv‰ðÍ
  • žwŠ_ é‹M
    ¶ŠˆKе‚ª‹y‚Ú‚·˜’ɂ̜늳—¦
  • ‘O“c —Ç‘¾˜N
    ç—tŒ§“à‘S‚Ă̓S“¹‰w‚É‚¨‚¯‚é•Ö—˜‚³‚Ì“Œv‰ðÍ
  • ¼“c —T–ç
    Žq‹Ÿ‚Ì–¼‘O‚ÉŠÖ‚·‚铌v‰ðÍ
  • –Î–Ø —äŽu
    ‘åŠw¶‚ÌŒ‹¥‚ÉŠÖ‚·‚éˆÓޝ‚Ì“Œv‰ðÍ
  • Vˆä ˜a”n
    ‘½•ϗʉðÍ—˜_‚Ì‹ï‘̉»
  • ’––” ˜aŽ÷
    •Ï”‘I‘ð–@‚É‚æ‚é‰Ô•²Ç‚Ì“Œv‰ðÍ
  • ¬Ž› —D‹P
    ‘å”ÑŒ´”­Ä‰Ò“­‚ÉŠÖ‚·‚éˆÓޝ’²¸‚Ì“Œv‰ðÍ
  • Žðˆä q‘¾˜N
    “ú’†A“úŠØ‚̑ۊ֌W‚ÉŠÖ‚·‚é«—ˆ‚Ì•sˆÀ‚ɂ‚¢‚Ă̓Œv‰ðÍ
  • {“¡ ’¨–ç
    ƒXƒ}[ƒgƒtƒHƒ“‚ÌŠ—LŽžŠú‚Ìl‚¦‚ÉŠÖ‚·‚铌v‰ðÍ
  • ˜hŒ© ‘ñÆ
    lŒûˆÚ“®‚É‚¨‚¯‚é’j—‚Ì·‚Ì“Œv‰ðÍ
  • “cç³ ”ü•ä
    ‘Ò‚¿‡‚킹‚ÉŠÖ‚·‚铌v‰ðÍ
  • ‹Êˆä ”ü•ä
    Œ»‘ãl‚ÌuHv‚ÉŠÖ‚·‚铌v‰ðÍ
  • ’†ª O‹M
    “oŽR‚ÌŽ–‘O€”õ‚ÉŠÖ‚·‚铌v‰ðÍ
  • ’·“ê ^Šw
    ŠÂ‹«‚âˆÓޝ‚̈Ⴂ‚É‚¨‚¯‚é•¶—‘I‘ð‚ÌŠÖŒW«‚ɂ‚¢‚Ă̓Œv‰ðÍ
  • –¥—Ö ‘å‰î
    ‰ñ‹A•ªÍ‚É‚æ‚é”_‰Æ‚Ì”„ã‰ðÍ
  • ŽRè x
    ‚¢‚¶‚߂ɂ‚¢‚Ă̓Œv‰ðÍ
  • ˆ¢“à —É•½
    ƒxƒCƒY“Œv‚É‚æ‚é‘告–o‚ÌŸ”s—\‘z
  • –¾‰i x—C
    Žå¬•ª•ªÍ‚É‚æ‚éƒfƒ‚ƒXƒL[‚Ì“Œv‰ðÍ
  • “V–ì Š°”V
    Žq‹Ÿ‚̑̋ë‚ÉŠÖ‚·‚铌v‰ðÍ
  • ]Œ´ ’
    Žå¬•ª•ªÍ‚É‚æ‚鬔ž‚Ì“Œv‰ðÍ
  • ‘å•l вŠó
    ƒvƒ–ì‹…–kŠC“¹“ú–{ƒnƒ€ƒtƒ@ƒCƒ^[ƒY‚Ìí—͉ðÍ
  • ¬“c „Žm
    ³•û•ªŠ„•\‚É‚æ‚鶉E‚ÌŠÖ߉^“®‚ÉŠÖ‚·‚铌v‰ðÍ
  • •ú± Ms
    ‹£”n‚É‚¨‚¯‚釈ʂƎ–‘OðŒ‚ÌŠÖ˜A«‚̉ðÍ
  • ¬o —z•½
    ”—ʉ»‡T—Þ‚ð—p‚¢‚½ƒƒCƒ“ƒo[‚Ì”„‚èã‚°‚̉ð͂Ɨ\‘ª
  • ŽOŽ} —S•ã
    ”—ʉ»‡V—Þ‚ð—p‚¢‚½“Œ“ú–{‘åkЂɊւ·‚éˆÓޝ’²¸
  • “‡“c •¶
    ¶ŠˆKе‚É‚æ‚éƒCƒ“ƒtƒ‹ƒGƒ“ƒU‚̜늳—¦‚ÉŠÖ‚·‚铌v‰ðÍ
  • “c’† –í¶
    ˆ¬—͂̓Œv‰ðÍ
  • “cç³ ‰ë˜a
    ç—tŒ§‚ÌŒð’ÊŽ–ŒÌ‚ÉŠÖ‚·‚é‰ðÍ
  • ’†–{ «Ži
    ‰Í셈ʂ̎žŒn—ñƒf[ƒ^‚̉ðÍ
  • –{“c “N•j
    “ˆê‹…‚É‚æ‚é¬Ñ‚ւ̉e‹¿‚Ì“Œv‰ðÍ
  • ‘O“c Œb”üŽq
    Œ»‘ã—«‚Ì‚¨‚ЂƂ肳‚ÜŽ–î‚É‚¨‚¯‚铌v‰ðÍ
  • ‘O“c sŽu
    “ŒvŠw“IŽè–@‚É‚æ‚é“s“¹•{Œ§•ʂ̖L‚©‚³‚Ì•ªÍ
  • ÎŒ´ ‘ñ–
    ƒvƒƒeƒjƒX‘IŽè‚Ì“Œv‰ðÍ
  • ìè ‹¦
    ƒvƒ–ì‹…‘IŽè”\—͂ƃhƒ‰ƒtƒg‡ˆÊ‚Ƃ̊֘A«‚ɂ‚¢‚Ä
  • ‹e’r G˜a
    °‰®‚Ì“Œv‰ðÍ
  • Vé —Ì‘¾
    “ŒvŠw‚É‚¨‚¯‚錟o—͂̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚錤‹†
  • —é–Ø ‰ël
    “ú–{‘“à‚̉ÎЃf[ƒ^‚Ì“Œv‰ðÍ
  • ŠÖŒû ˜aÆ
    ƒSƒ‹ƒt‘IŽè‚Ì‘‡—̓‰ƒ“ƒLƒ“ƒO
  • ŠÖ’J —C‘¾
    ƒxƒCƒY“Œv‚É‚æ‚éƒTƒbƒJ[‚ÌŸ”s—\‘z
  • “c’† —m”V
    ‘åŠw¶‚Ì¶ŠˆŽÀ‘Ô‚ÉŠÖ‚·‚é•ªŠ„•\“Œv‰ðÍ
  • ’†–ì ^“o
    2010 FIFA WORLD CUP‚Ì“Œv‰ðÍ
  • “¡‘º W—m
    “s“¹•{Œ§•ʃf[ƒ^‚ð—p‚¢‚½o¶—¦‚Ìd‰ñ‹A•ªÍ
  • áÁ“ˆ Œ’‘¾˜Y
    ¢ŠE‚Ì“S|ŽY‹Æ‚ÉŠÖ‚·‚铌v‰ðÍ
  • ‘ºã ãÄ‘¾
    ¢ŠEŠe‘‚¨‚æ‚Ñ“ú–{‘“à‚̎Љï•Ûá‚ÉŠÖ‚·‚铌v‰ðÍ
  • ‹g“c ‰p—¢
    VŒ^ƒCƒ“ƒtƒ‹ƒGƒ“ƒU‚ÌŠ´õ—vˆö‚ÉŠÖ‚·‚铌v‰ðÍ
  • ]’Ë Í•¶
    Žå¬•ª•ªÍ‚É‚æ‚éˆîì‚Ì“Œv‰ðÍ
  • ‘åàV Œb—˜
    ‘½•ϗʉð͂ɂæ‚é“s“¹•{Œ§•Ê•½‹ÏŽõ–½‚Ì“Œv‰ðÍ
  • ‰Í‡ —T–ç
    ŽžŒn—ñ‰ð͂ɂæ‚éŠO‘ˆ×‘ւ̕ϓ®—\‘ª
  • ‹àŒ´ ‹B“T
    ŽRŠx‘˜“ïE…“ï‚Ì“Œv‰ðÍ
  • ¼ Œ[Œá
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‚É‚æ‚éŠCŠO—·s‚̃j[ƒY•ªÍ
  • ŽÂ“c Šo
    ³•û•ªŠ„•\‚ð—p‚¢‚½“ú–{‚̈¬—͂̓Œv‰ðÍ
  • ŠÑˆä а‹I
    Bradley-Terryƒ‚ƒfƒ‹‚É‚æ‚éƒvƒ–ì‹…‚Ì“Œv‰ðÍ
  • –ìè —T—
    ”—ʉ»‡V—Þ‚ð—p‚¢‚½ƒXƒC[ƒc‚ÌšnD‰ðÍ
  • ‹´–{ “Y”T‰Á
    ”—ʉ»ŽO—Þ‚É‚æ‚é‚Zˆê”N¶‚Ìi˜H‚ɑ΂·‚él‚¦•û‚̉ðÍ
  • ŽR–{ ’Žj
    «ŠûŠûŽm‚Ì“Œv‰ðÍ
  • ‹g–{ ‘ñ–î
    Žå¬•ª•ªÍ‹y‚уNƒ‰ƒXƒ^[•ªÍ‚É‚æ‚éŒöŠQ‹ê‚̉ðÍ
  • ŽáŽR “NŽj
    “s“¹•{Œ§•ʃf[ƒ^‚ÉŠî‚¢‚½”Æß‚Ìd‰ñ‹A•ªÍ
  • ˆÀ“¡ @Ži
    ˆãŽt‚Ì„ˆÚ‚Æ“s“¹•{Œ§•ʂɂ݂½Ž©Ž¡‘̧̂̑‚ÉŠÖ‚·‚铌v‰ðÍ
  • ˆäã ‹M”Ž
    ŽžŒn—ñ‰ðÍ‚ð—p‚¢‚½Œ´–ûæ•¨Žæˆø‰¿Ši‚Ì•ªÍ
  • ‰|–{ Œ‹ˆß
    —·s“Œv
  • ¬¼ ³–¾
    ¬’†ŠwZ‚ÉŠÖ‚·‚铌v‰ðÍ
  • “cŒû —z‰î
    ƒ|[ƒgƒtƒHƒŠƒI‚É‚¨‚¯‚郊ƒXƒNŠÇ—•]‰¿
  • ’JàV в–ç
    ƒTƒ‰ƒuƒŒƒbƒh‚ÌŒŒ“‚ÉŠÖ‚·‚铌v‰ðÍ
  • ’·”ö Ž—m
    Œ´–û‰¿Ši“™‚ª‹y‚Ú‚·ƒKƒX”Ì”„—ʂւ̉e‹¿
  • ‰H“c “¿¬
    ‹£”n‚É‚¨‚¯‚é‹RŽè‚̬т̉ðÍ
  • ‘‘º ˆê•ä
    ‘告–o‚Ì“Œv‰ðÍ
  • ¼‘º —D
    Žå¬•ª•ªÍ‚É‚æ‚é“S“¹Ž–‹Æ‚Ì“Œv‰ðÍ
  • ‹{àV Œõ‘¾
    Žå¬•ª•ªÍ‹y‚уNƒ‰ƒXƒ^[•ªÍ‚É‚æ‚éƒvƒ–ì‹…‚Ì“Œv‰ðÍ
  • ‘º£ Œ[•ã
    ¶–½•ÛŒ¯”Šw‚ð—p‚¢‚½—˜—¦‚É‚æ‚é•ÛŒ¯—¿E•ÛŒ¯‹à‚̉ðÍ
  • ¶‹T ´‹M
    ˆâ“`Žq”­Œ»ƒf[ƒ^‚ɑ΂·‚éANOSVA‚ð—p‚¢‚½“Œv‰ðÍ
  • ‰Á“¡ ‹MŽj
    ‘½d”äŠr–@‚É‚æ‚éVŽÔ“o˜^—¦‚Ì“Œv‰ðÍ
  • ìè —m—S
    ¢ŠE‘å‰ï‚É‚¨‚¯‚éƒoƒŒ[ƒ{[ƒ‹‚Ì“Œv‰ðÍ
  • ŒÜ–¡ •¶”Ž
    ¬Ž™‚Ìšb‘§‚Æšb–‚Ɋւ·‚é‘å‹C‰˜õ•¨Ž¿‚Ì—vˆö•ªÍ
  • ›””n ˆŸŽÑ”ü
    Žå¬•ª•ªÍ‚É‚æ‚éˆã—ÉðÍ
  • “¿–ì ”Ž‹M
    ŽžŒn—ñ‰ð͂ɂæ‚銔‰¿—\‘ª
  • •y“c ‘l
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‹y‚Ñ‘o‘ÎŽÚ“x–@‚É‚æ‚éSUVŽÔŽí‚ÌŽd—l’ñˆÄ
  • •Ÿ“c ^l
    ŽžŒn—ñ‰ðÍ‚ð—p‚¢‚½“ú–{‚̘J“­—͂̕ªÍ
  • –kžŠ Œ’“ñ
    Žå¬•ª•ªÍ‚É‚æ‚éJƒŠ[ƒO‚Ìí—Í•ªÍ
  • –x ‹œŽŸ
    ”—ʉ»‚P—Þ‹y‚Ñ•ªŠ„•\‰ð͂ɂæ‚éƒJƒtƒF‚Ì”„㓌v‰ðÍ
  • “’ó rÍ
    ‘¨‘I‹“‚É‚¨‚¯‚é“s“¹•{Œ§•Ê“Š•[—¦‚Ì“Œv‰ðÍ
  • “nç³ —ƒ
    •ªŠ„•\‚¨‚æ‚Ñd‰ñ‹A•ªÍ‚ð—p‚¢‚½Œð’ÊŽ–ŒÌ‚Ì“Œv•ªÍ
  • ¡ˆä аl
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‹y‚Ñ‘o‘ÎŽÚ“x–@‚É‚æ‚é‘“à—·s‚̃j[ƒY•ªÍ‚Æ‚»‚̉ž—p
  • ¬“‡ —Û
    —lX‚ÈŽžŒn—ñƒf[ƒ^ŠÔ‚É‚¨‚¯‚éŠÖ˜A«‚̉ðÍ
  • ²“¡ ˜a^
    ”—ʉ»‚P—Þ‚É‚æ‚éCD‚Ì”„ã–‡”—\‘ª
  • ‰–“c ’¼l
    ‹lí‚ÌŽ‹’®—¦‚ɂ‚¢‚Ă̕ªÍ
  • ’Øˆä ®l
    Žå¬•ª•ªÍ‚É‚æ‚éƒvƒƒSƒ‹ƒtƒ@[‚̉ðÍ
  • –L“c ‹ªŒ÷
    ‹ó`‚É‚¨‚¯‚éƒJƒtƒF‚Ì”„‚èã‚°“Œv‰ðÍ
  • ’†“‡ “o
    ƒXƒ|[ƒc‘IŽè‚ɂ݂é’a¶ŒŽ‚ÌŒXŒü‚Ì“Œv‰ðÍ
  • ‰i’J “T”V
    “s“¹•{Œ§•ʃf[ƒ^‚ÉŠî‚­ˆã—ÔïŠi·‚ÉŠÖ‚·‚é‰ðÍ
  • –쑺 Œ«Ži
    “Œ•–ì“cüŠe‰w‚É‚¨‚¯‚éƒAƒp[ƒg‚̉ƒÀ‚Ìd‰ñ‹A•ªÍ
  • ‰H’¹ –¾“ú‰À
    •ªŠ„•\‚É‚æ‚éƒtƒ@[ƒXƒgƒt[ƒh“X‚Ì”„‚èã‚°ŒXŒü‚̉ðÍ
  • ”· —m•½
    Bradley-Terryƒ‚ƒfƒ‹‚ð—p‚¢‚½“ú–{ƒVƒŠ[ƒY‹y‚уvƒŒ[ƒIƒt‚Ì—\‘z
  • •ŸŽi „Žj
    W’†‘ȉ~‚É‚æ‚é—lX‚È•ª•z‚Ì—LŒø„’è—ʂ̔äŠr
  • –Ñ—˜ ‘å‹I
    •ªŠ„•\‚ð—p‚¢‚½—¬ŽRŽs‚É‚¨‚¯‚锯ߋy‚ÑŒð’ÊŽ–ŒÌ‚̉ðÍ
  • ŽR“c ÍŽj
    “s“¹•{Œ§•ʂ̎©ŽEŽÒ”‚Ì“Œv‰ðÍ
¦ƒz[ƒ€ƒy[ƒW‚ÉŒfÚ‚Ì‹LŽ–EŽÊ^“™‚Ì“]Ú‚ð‹Ö‚¶‚Ü‚·
© 1993-2014 TOMIZAWA LABORATORY. ALL Rights Reserved.