
@”ŽŽm˜_•¶‹y‚Ñ’¼‹ß8”NŠÔ•ª‚ÌCŽm˜_•¶E‘²‹Æ˜_•¶‚̃^ƒCƒgƒ‹‹y‚Ñ’˜ŽÒ‚ðЉ‚Ü‚·B
| ”ŽŽm˜_•¶ | CŽm˜_•¶ | ŠwŽm˜_•¶ |
| 2013 ”N“x | 2012 ”N“x | 2011 ”N“x | 2010 ”N“x | 2009 ”N“x | 2008 ”N“x | 2007 ”N“x | 2006 ”N“x |
| 2013 ”N“x | 2012 ”N“x | 2011 ”N“x | 2010 ”N“x | 2009 ”N“x | 2008 ”N“x | 2007 ”N“x | 2006 ”N“x |
- ‘qã OK
On decompositions of symmetry for ordinal contingency tables - ¶‹T ´‹M
Orthogonal decompositions and measure of models for analysis of contingency tables - ŽR–{ hŽi
Decompositions of Model and Measure for Analysis of Square Contingency Tables - “c”¨ kŽ¡
Modeling and decompositions of various symmetry for categorical data analysis - ŽR–{ ‰p°
Measures and decompositions of symmetry model for multi-way contingency tables
- ˆ¢“à —É•½
On decomposition of improved estimator of measure for symmetry in square contingency tables - –¾‰i x—C
Measure of departure from symmetry based on entropy for square contingency tables - “V–ì Š°”V
Extended marginal homogeneity model for square contingency tables - ]Œ´ ’
Proposal for improvement of approximate unbiased estimator of the log odds ratio - ‘å•l вŠó
Decompositions of symmetry using generalized linear diagonals-parameter symmetry model and orthogonality for square contingency tables with ordered categories - ¬“c „Žm
A modied palindromic symmetry model and decomposition of symmetry for square contingency tables with ordered categories - ¬o —z•½
Correlation between two types of scales to measure the distance from the symmetry - ŽOŽ} —S•ã
An extended asymmetry model and decompositions of symmetry for square contingency tables - “‡“c •¶
Measure of departure from symmetry for the alalysis of collapsed square contingency tables with ordered categories - “c’† –í¶
Sum-symmetry model and its orthogonal decomposition for square contingency tables having ordered categories - ’†–{ «Ži
Decomposition of diamond model for square contingency tables with ordered categories - “¡‘º W—m
Incomplete polynomial diagonals-parameter symmetry model for square contingency tables - –{“c “N•j
Measure of departure from point-symmetry for two-way contingency tables with ordered categories - ‘O“c sŽu
Wald test statistic of generalized marginal homogeneity model for square contingency tables - ÎŒ´ ‘ñ–
Bivariate t-distribution type symmetry model for ordered square contingency tables - ìè ‹¦
Asymmetry measure on marginal homogeneity for square contingency tables with ordered categories - ‹e’r G˜a
Improved power-divergence type measure of departure from diagonals-parameter symmetry for square contingency tables with ordered categories - Vé —Ì‘¾
Improved index of departure from extended marginal homogeneity in square contigency tables - —é–Ø ‰ël
Incomplete marginal homogeneity model for square contingency tables - ŠÖŒû ˜aÆ
Local subsymmetry models for square contingency tables with ordered categories - ŠÖ’J —C‘¾
Improved measure of departure from extended marginal homogeneity for square contingency tables with ordered categories - “c’† —m”V
Improved approximate unbiased estimators of measures of marginal homogeneity for square contingency tables - ’†–ì ^“o
Wald test statistic for cumulative diagonals-parameter symmetry model in square contingency tables - áÁ“ˆ Œ’‘¾˜Y
Distance measure of departure from cumulative linear diagonals-parameter symmetry for square contingency tables with ordered categories - ‘ºã ãÄ‘¾
Point-symmetry models and decomposition for collapsed square contingency tables - ‹g“c ‰p—¢
On measure of proportional reduction in error for two-way contingency tables with ordinal categories - ]’Ë Í•¶
Generalized measure of departure from conditional symmetry for square contingency tables with ordered categories - ‰Í‡ —T–ç
Decompositions of polynomial parameter-symmetry models for square contingency tables with ordered categories - ‹àŒ´ ‹B“T
Distance measure of departure from marginal homogeneity for contingency tables with nominal categories - ¼ Œ[Œá
Decomposition of measures of quasi-symmetry for square contingency tables - ŽÂ“c Šo
Extensions of marginal homogeneity model and decompositions for ordinal quasi-symmetry model in square contingency tables with ordered categories - ŠÑˆä а‹I
Decomposition of point-symmetry using information theoretic approach in square contingency tables - –ìè —T—
Measure on proportional reduction in error for multi-way contingency tables with an ordinal response - ‹g–{ ‘ñ–î
Measure for marginal homogeneity and marginal asymmetry model in square tables with ordered categories - ˆÀ“¡ @Ži
Extended ridit score type quasi-symmetry model and decomposition of symmetry for square contingency tables - ˆäã ‹M”Ž
Expected mean squared error for some symmetry models in three-way contingency tables - ‰|–{ Œ‹ˆß
On measure of departure from marginal homogeneity for square contingency tables with nominal categories - ¬¼ ³–¾
Measure of departure from double-symmetry for square tables - “cŒû —z‰î
Incomplete double symmetry model for square contingency tables - ‰H“c “¿¬
Masure of departure from marginal point-symmetry for three-way contingency tables - ‘‘º ˆê•ä
Improvement of measures for marginal homogeneity in square contingency tables - ¼‘º —D
On test of quasi point symmetry for square contingency tables - ‹{àV Œõ‘¾
Measure of departure from average cumulative symmetry for square tables having ordinal categories - ‘º£ Œ[•ã
On distance measure of departure from symmetry for multi-way contingency tables - ¶‹T ´‹M
Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories - ‰Á“¡ ‹MŽj
A measure of departure from diagonals-parameter symmetry and its application for square contingency tables - ìè —m—S
Improved measure of departure from point-symmetry for two-way contingency tables - —é–Ø Œ³Žq
Measure of departure from marginal point-symmetry for two-way contingency tables - ‚‹´ •¶”Ž
Double symmetry model and its orthogonal decomposition for multi-Way tables - “¿–ì ”Ž‹M
Wald test statistic for marginal point-symmetry model for multi-way contingency tables - •y“c ‘l
Distance measure of departure from quasi-symmetry and bradley-terry model for square contingency tables with nominal categories - •Ÿ“c ^l
Distance measure of departure from symmetry for square contingency tables with ordered categories - –x ‹œŽŸ
Extension of measure for no three-factor interaction model in three-way contingency tables - “’ó rÍ
Modified point symmetry model for square contingency tables - ¡ˆä аl
Orthogonal decomposition of symmetry into conditional and global symmetry for three-way contingency tables with ordered categories - ¬“‡ —Û
The decompositions for the symmetry and conditional symmetry models in square contingency tables - ‰–“c ’¼l
Test of homogeneity for measure of departure from symmetry in square contingency tables - ’Øˆä ®l
Distance measure of departure from symmetry for square contingency tables with nominal categories - –L“c ‹ªŒ÷
The delta symmetry model and its applications - ‰i’J “T”V
A measure of departure from average symmetry for square contingency tables with ordered categories - –쑺 Œ«Ži
Equivalence test of measures of departure from marginal homogeneity for r ~ r tables - ‰H’¹ –¾“ú‰À
Measures of departure from collapsed symmetry for multi-way contingency tables - ¬“‡ ’qº
A new measure based on sensitivity and specificity - ”· —m•½
Generalized measure of departure from no three-factor interaction model for 2 ~ 2 ~ K contingency tables - •ŸŽi „Žj
A generalization of measure of departure from uniform association in two-way contingency tables - –Ñ—˜ ‘å‹I
A measure of departure from diagonals-parameter symmetry model for square contingency tables - ŽR“c ÍŽj
Generalized measures of departure from symmetry for square contingency tables - ‘qã OK
Contaminated normal type symmetry model and decomposition of symmetry for square contingency tables - ¬—Ñ LŽk
Conditional marginal cumulative logistic models and decomposition of marginal homogeneity model for multi-way tables - ù“‡ —²‹`
Expected mean squared error of estimators for symmetry and asymmetry models for contingency tables - ûü‘ò ãÄ
Collapsed symmetry model and its decomposition for multi-way tables with ordered categories - •x—¢ —É‘¾
An improved approximate unbiased estimator of log-odds ratio for 2~2 contingency tables - Šâ–{ ä—¢
Linear column-parameter symmetry model for square contingency tables: application to decayed teeth data - ‘åê ‹I²
Improved approximate unbiased estimators of measures of asymmetry for square contingency tables - •Бq TŒá
Decompositions of marginal homogeneity model using cumulative logistic models for multi-way contingency tables - ŒIŒ´ —Ç•½
Improved measure of symmetry for square contingency tables with ordered categories - “c“ˆ K¹
A measures of asymmetry of marginal ridits for square contingency tables with ordered categories - “c‘º Œ’
Generalized measure of association for contingency tables - ’†“ˆ —Dˆê
Improvement of power-divergence-type measure of departure from symmetry and comparison of speeds of normal approximation - ŒÃ’J ‚ä‚©‚è
Measure of departure from extended marginal homogeneity for square contingency tables with ordered categories
- ‘ŠàV ˆ¤“Þ
Š´õÇ—¬s‚Æ‘å‹CŠÂ‹«‚ÌŠÖ˜A‚Ì“Œv‰ðÍ - Ô–x ^Ži
ŽÀ‰Æ•é‚炵Eˆêl•é‚炵‚ð‚·‚é‘åŠw¶‚Ìe‚ɑ΂·‚éˆÓޝ‰ðÍ - –ƒ¶ ‰hŽ÷
ƒ[ƒJƒ‹ƒq[ƒ[‚ÌŒ`‘Ԃ̕ϑJ‚ÉŠÖ‚·‚é‰ðÍ - ’r‹T —Ú—¢Žq
Šw¶‚̃Aƒ‹ƒR[ƒ‹šnD‚ÉŠÖ‚·‚铌v‰ðÍ - “àŽR žx
ƒJƒ‰ƒIƒP“X‘I‚т̊ϓ_•Êd—v“x‚̉ðÍ - ‘å‹v•Û ]—¢Žq
—U“±‚É‚æ‚éˆÓŒ©‚̕΂è‚â‚·‚³‚Ì’²¸ - ‘åŽR ’qŠî
“Œ‹žƒIƒŠƒ“ƒsƒbƒN‚ÉŠÖ‚·‚éˆÓޝ’²¸ - Š|ŽD ƒ•½
‰~ˆÀ‚ÉÅ“_‚ð“–‚Ä‚½‘åŠw¶‚ÌŒoςɊւ·‚éˆÓޝ’²¸ - ‰Á“¡ ç‰l
•ê‚Ì“úE•ƒ‚Ì“ú‚ɑ΂·‚éˆÓޝ’²¸ - a’J –¾
ˆê‘ΔäŠr–@‚É‚æ‚éJ ƒŠ[ƒOƒNƒ‰ƒu‚̉ðÍ - ´… —F‹K
Ž©“®ŽÔ•’Ê–Æ‹–‚ÉŠÖ‚·‚铌v‰ðÍ - {“¡ F_
ˆêlÌ•\Œ»‚Ì‚½‚߂̫Ši‹y‚ÑŒZ’í\¬‚ª—^‚¦‚é“Á’¥‚Ì“Œv‰ðÍ - žwŠ_ é‹M
¶ŠˆKе‚ª‹y‚Ú‚·˜’ɂ̜늳—¦ - ‘O“c —Ç‘¾˜N
ç—tŒ§“à‘S‚Ă̓S“¹‰w‚É‚¨‚¯‚é•Ö—˜‚³‚Ì“Œv‰ðÍ - ¼“c —T–ç
Žq‹Ÿ‚Ì–¼‘O‚ÉŠÖ‚·‚铌v‰ðÍ - –Î–Ø —äŽu
‘åŠw¶‚ÌŒ‹¥‚ÉŠÖ‚·‚éˆÓޝ‚Ì“Œv‰ðÍ - Vˆä ˜a”n
‘½•ϗʉðÍ—˜_‚Ì‹ï‘̉» - ’––” ˜aŽ÷
•Ï”‘I‘ð–@‚É‚æ‚é‰Ô•²Ç‚Ì“Œv‰ðÍ - ¬Ž› —D‹P
‘å”ÑŒ´”ĉғ‚ÉŠÖ‚·‚éˆÓޝ’²¸‚Ì“Œv‰ðÍ - Žðˆä q‘¾˜N
“ú’†A“úŠØ‚̑ۊ֌W‚ÉŠÖ‚·‚é«—ˆ‚Ì•sˆÀ‚ɂ‚¢‚Ă̓Œv‰ðÍ - {“¡ ’¨–ç
ƒXƒ}[ƒgƒtƒHƒ“‚ÌŠ—LŽžŠú‚Ìl‚¦‚ÉŠÖ‚·‚铌v‰ðÍ - ˜hŒ© ‘ñÆ
lŒûˆÚ“®‚É‚¨‚¯‚é’j—‚Ì·‚Ì“Œv‰ðÍ - “cç³ ”ü•ä
‘Ò‚¿‡‚킹‚ÉŠÖ‚·‚铌v‰ðÍ - ‹Êˆä ”ü•ä
Œ»‘ãl‚ÌuHv‚ÉŠÖ‚·‚铌v‰ðÍ - ’†ª O‹M
“oŽR‚ÌŽ–‘O€”õ‚ÉŠÖ‚·‚铌v‰ðÍ - ’·“ê ^Šw
ŠÂ‹«‚âˆÓޝ‚̈Ⴂ‚É‚¨‚¯‚é•¶—‘I‘ð‚ÌŠÖŒW«‚ɂ‚¢‚Ă̓Œv‰ðÍ - –¥—Ö ‘å‰î
‰ñ‹A•ªÍ‚É‚æ‚é”_‰Æ‚Ì”„ã‰ðÍ - ŽRè x
‚¢‚¶‚߂ɂ‚¢‚Ă̓Œv‰ðÍ - ˆ¢“à —É•½
ƒxƒCƒY“Œv‚É‚æ‚é‘告–o‚ÌŸ”s—\‘z - –¾‰i x—C
Žå¬•ª•ªÍ‚É‚æ‚éƒfƒ‚ƒXƒL[‚Ì“Œv‰ðÍ - “V–ì Š°”V
Žq‹Ÿ‚̑̋ë‚ÉŠÖ‚·‚铌v‰ðÍ - ]Œ´ ’
Žå¬•ª•ªÍ‚É‚æ‚鬔ž‚Ì“Œv‰ðÍ - ‘å•l вŠó
ƒvƒ–ì‹…–kŠC“¹“ú–{ƒnƒ€ƒtƒ@ƒCƒ^[ƒY‚Ìí—͉ðÍ - ¬“c „Žm
³•û•ªŠ„•\‚É‚æ‚鶉E‚ÌŠÖ߉^“®‚ÉŠÖ‚·‚铌v‰ðÍ - •ú± Ms
‹£”n‚É‚¨‚¯‚釈ʂƎ–‘OðŒ‚ÌŠÖ˜A«‚̉ðÍ - ¬o —z•½
”—ʉ»‡T—Þ‚ð—p‚¢‚½ƒƒCƒ“ƒo[‚Ì”„‚èã‚°‚̉ð͂Ɨ\‘ª - ŽOŽ} —S•ã
”—ʉ»‡V—Þ‚ð—p‚¢‚½“Œ“ú–{‘åkЂɊւ·‚éˆÓޝ’²¸ - “‡“c •¶
¶ŠˆKе‚É‚æ‚éƒCƒ“ƒtƒ‹ƒGƒ“ƒU‚̜늳—¦‚ÉŠÖ‚·‚铌v‰ðÍ - “c’† –í¶
ˆ¬—͂̓Œv‰ðÍ - “cç³ ‰ë˜a
ç—tŒ§‚ÌŒð’ÊŽ–ŒÌ‚ÉŠÖ‚·‚é‰ðÍ - ’†–{ «Ži
‰Í셈ʂ̎žŒn—ñƒf[ƒ^‚̉ðÍ - –{“c “N•j
“ˆê‹…‚É‚æ‚é¬Ñ‚ւ̉e‹¿‚Ì“Œv‰ðÍ - ‘O“c Œb”üŽq
Œ»‘ã—«‚Ì‚¨‚ЂƂ肳‚ÜŽ–î‚É‚¨‚¯‚铌v‰ðÍ - ‘O“c sŽu
“ŒvŠw“IŽè–@‚É‚æ‚é“s“¹•{Œ§•ʂ̖L‚©‚³‚Ì•ªÍ - ÎŒ´ ‘ñ–
ƒvƒƒeƒjƒX‘IŽè‚Ì“Œv‰ðÍ - ìè ‹¦
ƒvƒ–ì‹…‘IŽè”\—͂ƃhƒ‰ƒtƒg‡ˆÊ‚Ƃ̊֘A«‚ɂ‚¢‚Ä - ‹e’r G˜a
°‰®‚Ì“Œv‰ðÍ - Vé —Ì‘¾
“ŒvŠw‚É‚¨‚¯‚錟o—͂̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚錤‹† - —é–Ø ‰ël
“ú–{‘“à‚̉ÎЃf[ƒ^‚Ì“Œv‰ðÍ - ŠÖŒû ˜aÆ
ƒSƒ‹ƒt‘IŽè‚Ì‘‡—̓‰ƒ“ƒLƒ“ƒO - ŠÖ’J —C‘¾
ƒxƒCƒY“Œv‚É‚æ‚éƒTƒbƒJ[‚ÌŸ”s—\‘z - “c’† —m”V
‘åŠw¶‚Ì¶ŠˆŽÀ‘Ô‚ÉŠÖ‚·‚é•ªŠ„•\“Œv‰ðÍ - ’†–ì ^“o
2010 FIFA WORLD CUP‚Ì“Œv‰ðÍ - “¡‘º W—m
“s“¹•{Œ§•ʃf[ƒ^‚ð—p‚¢‚½o¶—¦‚Ìd‰ñ‹A•ªÍ - áÁ“ˆ Œ’‘¾˜Y
¢ŠE‚Ì“S|ŽY‹Æ‚ÉŠÖ‚·‚铌v‰ðÍ - ‘ºã ãÄ‘¾
¢ŠEŠe‘‚¨‚æ‚Ñ“ú–{‘“à‚̎Љï•Ûá‚ÉŠÖ‚·‚铌v‰ðÍ - ‹g“c ‰p—¢
VŒ^ƒCƒ“ƒtƒ‹ƒGƒ“ƒU‚ÌŠ´õ—vˆö‚ÉŠÖ‚·‚铌v‰ðÍ - ]’Ë Í•¶
Žå¬•ª•ªÍ‚É‚æ‚éˆîì‚Ì“Œv‰ðÍ - ‘åàV Œb—˜
‘½•ϗʉð͂ɂæ‚é“s“¹•{Œ§•Ê•½‹ÏŽõ–½‚Ì“Œv‰ðÍ - ‰Í‡ —T–ç
ŽžŒn—ñ‰ð͂ɂæ‚éŠO‘ˆ×‘ւ̕ϓ®—\‘ª - ‹àŒ´ ‹B“T
ŽRŠx‘˜“ïE…“ï‚Ì“Œv‰ðÍ - ¼ Œ[Œá
ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‚É‚æ‚éŠCŠO—·s‚̃j[ƒY•ªÍ - ŽÂ“c Šo
³•û•ªŠ„•\‚ð—p‚¢‚½“ú–{‚̈¬—͂̓Œv‰ðÍ - ŠÑˆä а‹I
Bradley-Terryƒ‚ƒfƒ‹‚É‚æ‚éƒvƒ–ì‹…‚Ì“Œv‰ðÍ - –ìè —T—
”—ʉ»‡V—Þ‚ð—p‚¢‚½ƒXƒC[ƒc‚ÌšnD‰ðÍ - ‹´–{ “Y”T‰Á
”—ʉ»ŽO—Þ‚É‚æ‚é‚Zˆê”N¶‚Ìi˜H‚ɑ΂·‚él‚¦•û‚̉ðÍ - ŽR–{ ’Žj
«ŠûŠûŽm‚Ì“Œv‰ðÍ - ‹g–{ ‘ñ–î
Žå¬•ª•ªÍ‹y‚уNƒ‰ƒXƒ^[•ªÍ‚É‚æ‚éŒöŠQ‹ê‚̉ðÍ - ŽáŽR “NŽj
“s“¹•{Œ§•ʃf[ƒ^‚ÉŠî‚¢‚½”Æß‚Ìd‰ñ‹A•ªÍ - ˆÀ“¡ @Ži
ˆãŽt‚Ì„ˆÚ‚Æ“s“¹•{Œ§•ʂɂ݂½Ž©Ž¡‘̧̂̑‚ÉŠÖ‚·‚铌v‰ðÍ - ˆäã ‹M”Ž
ŽžŒn—ñ‰ðÍ‚ð—p‚¢‚½Œ´–ûæ•¨Žæˆø‰¿Ši‚Ì•ªÍ - ‰|–{ Œ‹ˆß
—·s“Œv - ¬¼ ³–¾
¬’†ŠwZ‚ÉŠÖ‚·‚铌v‰ðÍ - “cŒû —z‰î
ƒ|[ƒgƒtƒHƒŠƒI‚É‚¨‚¯‚郊ƒXƒNŠÇ—•]‰¿ - ’JàV в–ç
ƒTƒ‰ƒuƒŒƒbƒh‚ÌŒŒ“‚ÉŠÖ‚·‚铌v‰ðÍ - ’·”ö Ž—m
Œ´–û‰¿Ši“™‚ª‹y‚Ú‚·ƒKƒX”Ì”„—ʂւ̉e‹¿ - ‰H“c “¿¬
‹£”n‚É‚¨‚¯‚é‹RŽè‚̬т̉ðÍ - ‘‘º ˆê•ä
‘告–o‚Ì“Œv‰ðÍ - ¼‘º —D
Žå¬•ª•ªÍ‚É‚æ‚é“S“¹Ž–‹Æ‚Ì“Œv‰ðÍ - ‹{àV Œõ‘¾
Žå¬•ª•ªÍ‹y‚уNƒ‰ƒXƒ^[•ªÍ‚É‚æ‚éƒvƒ–ì‹…‚Ì“Œv‰ðÍ - ‘º£ Œ[•ã
¶–½•ÛŒ¯”Šw‚ð—p‚¢‚½—˜—¦‚É‚æ‚é•ÛŒ¯—¿E•ÛŒ¯‹à‚̉ðÍ - ¶‹T ´‹M
ˆâ“`Žq”Œ»ƒf[ƒ^‚ɑ΂·‚éANOSVA‚ð—p‚¢‚½“Œv‰ðÍ - ‰Á“¡ ‹MŽj
‘½d”äŠr–@‚É‚æ‚éVŽÔ“o˜^—¦‚Ì“Œv‰ðÍ - ìè —m—S
¢ŠE‘å‰ï‚É‚¨‚¯‚éƒoƒŒ[ƒ{[ƒ‹‚Ì“Œv‰ðÍ - ŒÜ–¡ •¶”Ž
¬Ž™‚Ìšb‘§‚Æšb–‚Ɋւ·‚é‘å‹C‰˜õ•¨Ž¿‚Ì—vˆö•ªÍ - ›””n ˆŸŽÑ”ü
Žå¬•ª•ªÍ‚É‚æ‚éˆã—ÉðÍ - “¿–ì ”Ž‹M
ŽžŒn—ñ‰ð͂ɂæ‚銔‰¿—\‘ª - •y“c ‘l
ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‹y‚Ñ‘o‘ÎŽÚ“x–@‚É‚æ‚éSUVŽÔŽí‚ÌŽd—l’ñˆÄ - •Ÿ“c ^l
ŽžŒn—ñ‰ðÍ‚ð—p‚¢‚½“ú–{‚̘J“—͂̕ªÍ - –kžŠ Œ’“ñ
Žå¬•ª•ªÍ‚É‚æ‚éJƒŠ[ƒO‚Ìí—Í•ªÍ - –x ‹œŽŸ
”—ʉ»‚P—Þ‹y‚Ñ•ªŠ„•\‰ð͂ɂæ‚éƒJƒtƒF‚Ì”„㓌v‰ðÍ - “’ó rÍ
‘¨‘I‹“‚É‚¨‚¯‚é“s“¹•{Œ§•Ê“Š•[—¦‚Ì“Œv‰ðÍ - “nç³ —ƒ
•ªŠ„•\‚¨‚æ‚Ñd‰ñ‹A•ªÍ‚ð—p‚¢‚½Œð’ÊŽ–ŒÌ‚Ì“Œv•ªÍ - ¡ˆä аl
ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‹y‚Ñ‘o‘ÎŽÚ“x–@‚É‚æ‚é‘“à—·s‚̃j[ƒY•ªÍ‚Æ‚»‚̉ž—p - ¬“‡ —Û
—lX‚ÈŽžŒn—ñƒf[ƒ^ŠÔ‚É‚¨‚¯‚éŠÖ˜A«‚̉ðÍ - ²“¡ ˜a^
”—ʉ»‚P—Þ‚É‚æ‚éCD‚Ì”„ã–‡”—\‘ª - ‰–“c ’¼l
‹lí‚ÌŽ‹’®—¦‚ɂ‚¢‚Ă̕ªÍ - ’Øˆä ®l
Žå¬•ª•ªÍ‚É‚æ‚éƒvƒƒSƒ‹ƒtƒ@[‚̉ðÍ - –L“c ‹ªŒ÷
‹ó`‚É‚¨‚¯‚éƒJƒtƒF‚Ì”„‚èã‚°“Œv‰ðÍ - ’†“‡ “o
ƒXƒ|[ƒc‘IŽè‚ɂ݂é’a¶ŒŽ‚ÌŒXŒü‚Ì“Œv‰ðÍ - ‰i’J “T”V
“s“¹•{Œ§•ʃf[ƒ^‚Ɋã—ÔïŠi·‚ÉŠÖ‚·‚é‰ðÍ - –쑺 Œ«Ži
“Œ•–ì“cüŠe‰w‚É‚¨‚¯‚éƒAƒp[ƒg‚̉ƒÀ‚Ìd‰ñ‹A•ªÍ - ‰H’¹ –¾“ú‰À
•ªŠ„•\‚É‚æ‚éƒtƒ@[ƒXƒgƒt[ƒh“X‚Ì”„‚èã‚°ŒXŒü‚̉ðÍ - ”· —m•½
Bradley-Terryƒ‚ƒfƒ‹‚ð—p‚¢‚½“ú–{ƒVƒŠ[ƒY‹y‚уvƒŒ[ƒIƒt‚Ì—\‘z - •ŸŽi „Žj
W’†‘ȉ~‚É‚æ‚é—lX‚È•ª•z‚Ì—LŒø„’è—ʂ̔äŠr - –Ñ—˜ ‘å‹I
•ªŠ„•\‚ð—p‚¢‚½—¬ŽRŽs‚É‚¨‚¯‚锯ߋy‚ÑŒð’ÊŽ–ŒÌ‚̉ðÍ - ŽR“c ÍŽj
“s“¹•{Œ§•ʂ̎©ŽEŽÒ”‚Ì“Œv‰ðÍ
¦ƒz[ƒ€ƒy[ƒW‚ÉŒfÚ‚Ì‹LŽ–EŽÊ^“™‚Ì“]Ú‚ð‹Ö‚¶‚Ü‚·
© 1993-2014 TOMIZAWA LABORATORY. ALL Rights Reserved.
© 1993-2014 TOMIZAWA LABORATORY. ALL Rights Reserved.