˜_•¶ˆê——
@”ŽŽm˜_•¶‹y‚яCŽm˜_•¶E‘²‹Æ˜_•¶‚̃^ƒCƒgƒ‹‹y‚Ñ’˜ŽÒ‚ðÐ‰î‚µ‚Ü‚·B
CŽm˜_•¶
  • ŠâŠÔ ‚¢‚‚Ý
    Measures of departure from marginal homogeneity for the analysis of collapsed square contingency tables with ordered categories
  • ‹v•Û —T‘¾˜Y
    A measure of departure from partial marginal homogeneity for square contingency tables
  • ‡“c V•½
    Unrestricted normal distribution type symmetry model for square contingency tables with ordered categories
  • ²“¡ x
    Decomposition of parsimonious independence model using Pearson, Kendall and Spearman's correlation for two-way contingency tables
  • ’|“c Œ›l
    Measure of departure from symmetry using cumulative probability for square contingency tables with ordered categories
  • Ž›Œ³ —D‘¾
    On measure of departure from conditional symmetry for square contingency tables having ordered categories
  • ’†–ì O
    Directional measure for marginal homogeneity in square contingency tables with ordered categories
  • ª–{ ‘å•ã
    Generalized diagonal exponent conditional symmetry model for square contingency tables with ordered categories
‘²‹Æ˜_•¶
  • ”öú± —Y‹P
    ƒrƒ‹ƒ{[ƒh‚É‚¨‚¯‚éƒqƒbƒg‹È‰ðÍ‚ƍ쐬
  • Ö“¡ Œ’
    o¶—¦‚Ə@‹³‚ÌŠÖŒW‚ɂ‚¢‚Ä‚Ì“Œv‰ðÍ
  • ûü‹v•Û –]
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‚É‚æ‚郉[ƒƒ““X‚̃j[ƒY•ªÍ
  • ûü“c ’q«
    Šy‹È‚Ì“à“I—v‘f‚ÉŠî‚¢‚½ƒqƒbƒg‹È‚ÌŒXŒü‚Ì•Ï‘J
  • •ˆä rŽ÷
    “Œ‹ž“s“à‚ð’Ê‚éJR˜Hü‚Ì’x‰„—¦ŒXŒü•ªÍ
  • “c’† —Ç‘¾
    ‘åŠw¶‚ÌŒðÛl”‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ç—t r“T
    ‘a\‘¢ŠwK‚É‚æ‚éTOPIX-17‚ÌŽsê\‘¢•ªÍ
  • –ìŒû ’q—T
    –‹“à—ÍŽm‚ÌŽO–ð’B¬—\‘ª
  • ¯ ‚Ђ©‚é
    ‘åŠw‚ÌŠw•””z’u‚Ì’nˆæ«‚ÉŠÖ‚·‚錤‹†
  • –ž—¯ ‘åŽ÷
    ˆùH“X‚Ì’•¶ó‹µ‚Ì—vˆö‰ðÍ
”ŽŽm˜_•¶
  • ŽOŽ} —S•ã
    Modeling and measure of symmetry for contingency table analysis
CŽm˜_•¶
  • ‰ª“c ¹”V
    An extended bivariate t-distribution type symmetry model for square contingency tables
  • –Ø‘º —´l
    Improvement of a measure of departure from symmetry for square contingency tables with nominal categories
  • —é–Ø “Õˆê
    The measure of departure from extended marginal homogeneity for square contingency tables with ordered categories
  • “y‰® hˆê
    Confidence region and confidence intervals for diagonals parameter symmetry model in square contingency table
  • ’†‘º ‘–
    Generalized measure of departure from marginal homogeneity using marginal odds for multi-way tables with ordered categories
  • ªŠÝ Œ[Œá
    On decomposition of point-symmetry for square contingency table with ordered categories
  • “¡ˆä —º
    Refined estimator of measure for marginal homogeneity using marginal odds in square contingency tables
  • •Ê•{ ‰À”T
    Measure of departure from marginal average point-symmetry model for two-way contingency tables
  • ŠÛŽR ’q‹v
    Marginal inhomogeneity model based on complementary log-log transform for square contingency tables
  • ˜a“c —F
    Incomplete diagonals-parameter symmetry model for cumulative probabilities in square contingency tables with ordered categories
‘²‹Æ˜_•¶
  • ‘Š“c éDŒÈ
    2016”Nƒvƒ–ì‹…ƒZƒŠ[ƒO6‹…’c‚̐í—͉ðÍ
  • ’ràV —FÆ
    •ªŠ„•\‚ð—p‚¢‚½ƒXƒ|[ƒc‚̍D‚Ý‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ¡Ž} —˜Ž÷
    ŽÀŽÊ‰»‰f‰æ‚É‚¨‚¯‚镪Š„•\‚ð—p‚¢‚½“Œv‰ðÍ
  • ‰¬ŽR Pl
    d‰ñ‹A•ªÍ‚ð—p‚¢‚½ƒX[ƒp[ƒ}[ƒPƒbƒg‚̉¿ŠiÝ’è‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ì“Y ŽÑ‘ã”ü
    ”—ʉ»‡V—Þ‚ð—p‚¢‚½—«‚ÌšnD—ÞŽ—«‚̉ðÍ
  • ›Á ˆê–Â
    g‘Ì“I“Á’¥‚Ɛl‚Ì“à–Ê‚âŽïŒü‚Ƃ̉e‹¿‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ‚“c ¹‹I
    l‹C‚ð—p‚¢‚½‹£”n‚Ì“Œv‰ðÍ
  • ‚‹´ Œõ
    ƒ‰ƒCƒuƒnƒEƒX‚ÌŒö‰‰‚É‚¨‚¯‚éƒWƒƒƒ“ƒ‹–ˆ‚̈ù‚Ý•¨‚ÌŒXŒü•ªÍ
  • ‚Œ© ŒõL
    ƒŠƒIƒIƒŠƒ“ƒsƒbƒN‚É‚¨‚¯‚éƒoƒŒ[ƒ{[ƒ‹‚Ì“Œv‰ðÍ
  • ’|“à ‹MŽu
    ƒQ[ƒ€ŽžŠÔ‚ƏKŠµ‚ÌŠÖ˜A«‚Ì“Œv‰ðÍ
  • “c•£ ‰l
    ƒRƒXƒ‚ƒX‚̃XƒgƒŒƒX‘ϐ«‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • œA£ •ü‹M
    Žñ“sŒ—‚ÌŠe‰wA˜Hü‚̐ݔõ‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • Žº‰® —SbŽq
    og’nE‹Z—ð‚̈Ⴂ‚É‚¨‚¯‚éŽñ“sŒ—‚̉¿’lŠÏ‚ÉŠÖ‚·‚铝Œv‰ðÍ
”ŽŽm˜_•¶
  • ˆÀ“¡ @Ži
    Model and measure of symmetry for ordinal square contingency tables
CŽm˜_•¶
  • ‘ŠàV ˆ¤“Þ
    Decompositions of sum-symmetry model for ordinal square contingency tables
  • Ô–x ^Ži
    An entropy measure of departure from point-symmetry for multi-way contingency tables
  • ‘åŽR ’qŠî
    Decompositions of symmetry using cumulative sub-asymmetry models for square contingency tables
  • Š|ŽD ƒ•½
    A measure of departure from average symmetry for square contingency tables with ordinal categories
  • àF’J –¾
    Extension and generalization of the diagonal exponent symmetry model for square contingency tables with ordered categories
  • {“¡ F_
    A model having structures of generalized marginal homogeneity and quasi-symmetry for square contingency tables with ordered categories
  • žwŠ_ é‹M
    Parsimonious independece model and its orthogonal decomposition for two-way contingency tables
  • ‘O“c —Ç‘¾˜N
    Extended double asymmetry model and decomposition of double symmetry for square contingency tables
  • ¼“c —T–ç
    Double-symmetry models and its decomposition in collapsed square contingency tables
  • –Î–Ø —äŽu
    Yule type measure of departure from marginal homogeneity for square contingency tables with ordered categories
‘²‹Æ˜_•¶
  • ’|“c Œ›l
    •ªŠ„•\‚ð—p‚¢‚½e’m‚炸‚̉ðÍ
  • ŒN’Ë šõ
    l•¨‚Æ—·sæ‚ɂ‚¢‚ẲðÍ
  • ‹v•Û —T‘¾˜Y
    ‰i‹vŽ•‚Ì‘rŽ¸‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ª–{ ‘å•ã
    ˆâ“`Žq”­Œ»‚ÉŠî‚­S•s‘S‚ÉŠÖ˜A‚·‚éˆâ“`Žq‚Ì’Šo
  • ²“¡ x
    ˆâ“`Žq”­Œ»ƒf[ƒ^‚ÉŠî‚­•›ì—p‚ÉŠÖ‚·‚éˆâ“`ŽqƒZƒbƒg‚Ì’Tõ
  • ‡“c V•½
    “s“¹•{Œ§•ÊƒAƒŒƒ‹ƒM[Ž¾Š³‚ÌŽÀ‘Ô’²¸
  • ’†–ì O
    ˆ¬—Í‚ÌŒ¸‘Þ‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • Ž›Œ³ —D‘¾
    Žw‚̗͂ƈ¬—Í‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ŠâŠÔ ‚¢‚‚Ý
    ‰Æ’ëŠÂ‹«‚É‹Nˆö‚·‚é‘åŠw¶E‘åŠw‰@¶‚̐«•Ê–ðŠ„•ª‹ÆŠÏ‚ÉŠÖ‚·‚铝Œv‰ðÍ
CŽm˜_•¶
  • Vˆä ˜a”n
    On test of the log marginal model in two-way contingency tables
  • ’––” ˜aŽ÷
    Asymmetry measure based on entropy for analysis of square contingency tables with nominal categories
  • ¬Ž› —D‹P
    Improvement of a measure of departure from average symmetry for square contingency table with ordered categories
  • Žðˆä q‘¾˜N
    Symmetry, quasi-symmetry and marginal homogeneity of conditional probability for square contingency tables
  • {“¡ ’¨–ç
    On test of linear diagonals-parameter symmetry model in 3~3 contingency tables
  • ˜hŒ© ‘ñÆ
    Decomposition of symmetry using cumulative linear diagonals-parameter symmetry for square contingency tables
  • ’†ª O‹M
    Restricted normal distribution type symmetry model for square contingency tables with ordered categories
  • ’·“ê ^Šw
    Extended linear asymmetry model and decomposition of symmetry for square contingency tables
  • –¥—Ö ‘å‰î
    Measures of departure from marginal homogeneity based on entropy for square contingency tables with nominal categories
  • ŽRè x
    Test and measure on difference of marginal homogeneity between several square tables
‘²‹Æ˜_•¶
  • Îì ’tØ
    H—¿•Ê‚̔얞“x‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ˆÉ¨ “µ
    ‡–°ŽžŠÔ‚ÆŒ’N‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ‰ª“c ¹”V
    ‘åŠw¶‚É‚¨‚¯‚éŽÀ‰Æ•é‚炵‚ƈêl•é‚炵‚̐¶Šˆ‚ÉŠÖ‚·‚é”äŠr
  • –Ø‘º —´l
    ’†Šw¶‚̐¬Ñ‚Ì—vˆö‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • —é–Ø “Õˆê
    ƒ][ƒ“‚ƃpƒX‚ð—p‚¢‚½J1ƒ`[ƒ€‚Ì“Á’¥’Šo–@‚Ì”äŠr
  • {“¡ Œ’‘¾
    ATPƒvƒƒeƒjƒX‚É‚¨‚¯‚é“Á’èƒT[ƒtƒFƒXƒXƒyƒVƒƒƒŠƒXƒg‚̐„ˆÚ‚̉ðÍ
  • “y‰® hˆê
    ã–ì“Œ‹žƒ‰ƒCƒ“ŠJ‹Æ‚É‚¨‚¯‚éŽñ“sŒ—Œð’Ê“®Œü‚̉e‹¿‚̉ðÍ
  • “A ½‘¾
    ŠÖ“Œ’n•û‚ÌŒö—§}‘ŠÙ‚É‚¨‚¯‚铝Œv‰ðÍ
  • ªŠÝ Œ[Œá
    ƒCƒ“ƒ^[ƒlƒbƒgã‚É‚¨‚¯‚é”á”»‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ’·’Jì ’m¢
    ˆùH“X‚Å‚Ì—¿—‚̏o”‚Æ—j“ú‚ÌŠÖŒW«‚ɂ‚¢‚Ä‚Ì“Œv‰ðÍ
  • “¡ˆä —º
    JƒŠ[ƒO‚É‚¨‚¯‚éƒPƒK‚Ì—vˆö‰ðÍ
  • •Ê•{ ‰À”T
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‚É‚æ‚é—·sƒvƒ‰ƒ“‚Ì“Œv‰ðÍ
  • ŽO‰Y —ƒ
    ‹£”n‚̃IƒbƒY‚ð—p‚¢‚½”g—“x‚Ì—\‘ª
  • ‘º“c ˆêŽÀ
    Š´õÇ—¬s‚Æ‘å‹CŠÂ‹«‚ÌŠÖ˜A‚Ì“Œv‰ðÍ
  • ŠÛŽR ’q‹v
    ƒ][ƒ“‚ƃpƒX‚É‚æ‚éJ1ƒ`[ƒ€‚Ì“Á’¥‚̉Ž‹‰»
  • ˜a“c —F
    ‰f‰æŠÙ‚Ì“®ˆõ—\‘ª‚Æ—˜—pŽÒ‚̈ӎ¯’²¸‚̉ðÍ
  • ’†‘º ‘–
    Œy”ƍ߂ɑ΂·‚鎩Žå‹~Ï‚̐¥”ñ‚ÉŠÖ‚·‚铝Œv‰ðÍ
”ŽŽm˜_•¶
  • ‘qã OK
    On decompositions of symmetry for ordinal contingency tables
CŽm˜_•¶
  • ˆ¢“à —É•½
    On decomposition of improved estimator of measure for symmetry in square contingency tables
  • –¾‰i x—C
    Measure of departure from symmetry based on entropy for square contingency tables
  • “V–ì Š°”V
    Extended marginal homogeneity model for square contingency tables
  • ]Œ´ ’
    Proposal for improvement of approximate unbiased estimator of the log odds ratio
  • ‘å•l Š²Šó
    Decompositions of symmetry using generalized linear diagonals-parameter symmetry model and orthogonality for square contingency tables with ordered categories
  • ¬“c „Žm
    A modi ed palindromic symmetry model and decomposition of symmetry for square contingency tables with ordered categories
  • ¬o —z•½
    Correlation between two types of scales to measure the distance from the symmetry
  • ŽOŽ} —S•ã
    An extended asymmetry model and decompositions of symmetry for square contingency tables
  • “‡“c •¶
    Measure of departure from symmetry for the alalysis of collapsed square contingency tables with ordered categories
  • “c’† –퐶
    Sum-symmetry model and its orthogonal decomposition for square contingency tables having ordered categories
  • ’†–{ «Ži
    Decomposition of diamond model for square contingency tables with ordered categories
  • “¡‘º W—m
    Incomplete polynomial diagonals-parameter symmetry model for square contingency tables
  • –{“c “N•j
    Measure of departure from point-symmetry for two-way contingency tables with ordered categories
  • ‘O“c sŽu
    Wald test statistic of generalized marginal homogeneity model for square contingency tables
‘²‹Æ˜_•¶
  • ‘ŠàV ˆ¤“Þ
    Š´õÇ—¬s‚Æ‘å‹CŠÂ‹«‚ÌŠÖ˜A‚Ì“Œv‰ðÍ
  • Ô–x ^Ži
    ŽÀ‰Æ•é‚炵Eˆêl•é‚炵‚ð‚·‚é‘åŠw¶‚̐e‚ɑ΂·‚éˆÓŽ¯‰ðÍ
  • –ƒ¶ ‰hŽ÷
    ƒ[ƒJƒ‹ƒq[ƒ[‚ÌŒ`‘Ô‚Ì•Ï‘J‚ÉŠÖ‚·‚é‰ðÍ
  • ’r‹T —Ú—¢Žq
    Šw¶‚̃Aƒ‹ƒR[ƒ‹šnD‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • “àŽR žx
    ƒJƒ‰ƒIƒP“X‘I‚Ñ‚ÌŠÏ“_•Êd—v“x‚̉ðÍ
  • ‘å‹v•Û ]—¢Žq
    —U“±‚É‚æ‚éˆÓŒ©‚̕΂è‚â‚·‚³‚Ì’²¸
  • ‘åŽR ’qŠî
    “Œ‹žƒIƒŠƒ“ƒsƒbƒN‚ÉŠÖ‚·‚éˆÓŽ¯’²¸
  • Š|ŽD ƒ•½
    ‰~ˆÀ‚ɏœ_‚ð“–‚Ä‚½‘åŠw¶‚ÌŒoÏ‚ÉŠÖ‚·‚éˆÓŽ¯’²¸
  • ‰Á“¡ ç‰l
    •ê‚Ì“úE•ƒ‚Ì“ú‚ɑ΂·‚éˆÓŽ¯’²¸
  • a’J –¾
    ˆê‘ΔäŠr–@‚É‚æ‚éJ ƒŠ[ƒOƒNƒ‰ƒu‚̉ðÍ
  • ´… —F‹K
    Ž©“®ŽÔ•’Ê–Æ‹–‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • {“¡ F_
    ˆêlÌ•\Œ»‚Ì‚½‚߂̐«Ši‹y‚ÑŒZ’í\¬‚ª—^‚¦‚é“Á’¥‚Ì“Œv‰ðÍ
  • žwŠ_ é‹M
    ¶ŠˆKŠµ‚ª‹y‚Ú‚·˜’ɂ̜늳—¦
  • ‘O“c —Ç‘¾˜N
    ç—tŒ§“à‘S‚Ä‚Ì“S“¹‰w‚É‚¨‚¯‚é•Ö—˜‚³‚Ì“Œv‰ðÍ
  • ¼“c —T–ç
    Žq‹Ÿ‚Ì–¼‘O‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • –Î–Ø —äŽu
    ‘åŠw¶‚ÌŒ‹¥‚ÉŠÖ‚·‚éˆÓŽ¯‚Ì“Œv‰ðÍ
”ŽŽm˜_•¶
  • ¶‹T ´‹M
    Orthogonal decompositions and measure of models for analysis of contingency tables
CŽm˜_•¶
  • ÎŒ´ ‘ñ–
    Bivariate t-distribution type symmetry model for ordered square contingency tables
  • ìè ‹¦
    Asymmetry measure on marginal homogeneity for square contingency tables with ordered categories
  • ‹e’r G˜a
    Improved power-divergence type measure of departure from diagonals-parameter symmetry for square contingency tables with ordered categories
  • Vé —Ì‘¾
    Improved index of departure from extended marginal homogeneity in square contigency tables
  • —é–Ø ‰ël
    Incomplete marginal homogeneity model for square contingency tables
  • ŠÖŒû ˜aÆ
    Local subsymmetry models for square contingency tables with ordered categories
  • ŠÖ’J —C‘¾
    Improved measure of departure from extended marginal homogeneity for square contingency tables with ordered categories
  • “c’† —m”V
    Improved approximate unbiased estimators of measures of marginal homogeneity for square contingency tables
  • ’†–ì ^“o
    Wald test statistic for cumulative diagonals-parameter symmetry model in square contingency tables
  • áÁ“ˆ Œ’‘¾˜Y
    Distance measure of departure from cumulative linear diagonals-parameter symmetry for square contingency tables with ordered categories
  • ‘ºã ãđ¾
    Point-symmetry models and decomposition for collapsed square contingency tables
  • ‹g“c ‰p—¢
    On measure of proportional reduction in error for two-way contingency tables with ordinal categories
‘²‹Æ˜_•¶
  • Vˆä ˜a”n
    ‘½•Ï—ʉðÍ—˜_‚Ì‹ï‘̉»
  • ’––” ˜aŽ÷
    •Ï”‘I‘ð–@‚É‚æ‚é‰Ô•²Ç‚Ì“Œv‰ðÍ
  • ¬Ž› —D‹P
    ‘å”ÑŒ´”­Ä‰Ò“­‚ÉŠÖ‚·‚éˆÓŽ¯’²¸‚Ì“Œv‰ðÍ
  • Žðˆä q‘¾˜N
    “ú’†A“úŠØ‚̍‘ÛŠÖŒW‚ÉŠÖ‚·‚鏫—ˆ‚Ì•sˆÀ‚ɂ‚¢‚Ä‚Ì“Œv‰ðÍ
  • {“¡ ’¨–ç
    ƒXƒ}[ƒgƒtƒHƒ“‚̏Š—LŽžŠú‚̍l‚¦‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ˜hŒ© ‘ñÆ
    lŒûˆÚ“®‚É‚¨‚¯‚é’j—‚̍·‚Ì“Œv‰ðÍ
  • “cç³ ”ü•ä
    ‘Ò‚¿‡‚킹‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ‹Êˆä ”ü•ä
    Œ»‘ãl‚́uHv‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ’†ª O‹M
    “oŽR‚ÌŽ–‘O€”õ‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ’·“ê ^Šw
    ŠÂ‹«‚âˆÓŽ¯‚̈Ⴂ‚É‚¨‚¯‚镶—‘I‘ð‚ÌŠÖŒW«‚ɂ‚¢‚Ä‚Ì“Œv‰ðÍ
  • –¥—Ö ‘å‰î
    ‰ñ‹A•ªÍ‚É‚æ‚é”_‰Æ‚Ì”„ã‰ðÍ
  • ŽRè x
    ‚¢‚¶‚߂ɂ‚¢‚Ä‚Ì“Œv‰ðÍ
CŽm˜_•¶
  • ]’Ë Í•¶
    Generalized measure of departure from conditional symmetry for square contingency tables with ordered categories
  • ‰Í‡ —T–ç
    Decompositions of polynomial parameter-symmetry models for square contingency tables with ordered categories
  • ‹àŒ´ ‹B“T
    Distance measure of departure from marginal homogeneity for contingency tables with nominal categories
  • ¼ Œ[Œá
    Decomposition of measures of quasi-symmetry for square contingency tables
  • ŽÂ“c Šo
    Extensions of marginal homogeneity model and decompositions for ordinal quasi-symmetry model in square contingency tables with ordered categories
  • ŠÑˆä Š°‹I
    Decomposition of point-symmetry using information theoretic approach in square contingency tables
  • –ìè —T—
    Measure on proportional reduction in error for multi-way contingency tables with an ordinal response
  • ‹g–{ ‘ñ–î
    Measure for marginal homogeneity and marginal asymmetry model in square tables with ordered categories
‘²‹Æ˜_•¶
  • ˆ¢“à —É•½
    ƒxƒCƒY“Œv‚É‚æ‚é‘å‘Š–o‚̏Ÿ”s—\‘z
  • –¾‰i x—C
    Žå¬•ª•ªÍ‚É‚æ‚éƒfƒ‚ƒXƒL[‚Ì“Œv‰ðÍ
  • “V–ì Š°”V
    Žq‹Ÿ‚Ì‘Ì‹ë‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ]Œ´ ’
    Žå¬•ª•ªÍ‚É‚æ‚鏬”ž‚Ì“Œv‰ðÍ
  • ‘å•l Š²Šó
    ƒvƒ–ì‹…–kŠC“¹“ú–{ƒnƒ€ƒtƒ@ƒCƒ^[ƒY‚̐í—͉ðÍ
  • ¬“c „Žm
    ³•û•ªŠ„•\‚É‚æ‚鍶‰E‚̊֐߉^“®‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • •ú± Ms
    ‹£”n‚É‚¨‚¯‚鏇ˆÊ‚ÆŽ–‘OðŒ‚ÌŠÖ˜A«‚̉ðÍ
  • ¬o —z•½
    ”—ʉ»‡T—Þ‚ð—p‚¢‚½ƒƒCƒ“ƒo[‚Ì”„‚èã‚°‚̉ðÍ‚Æ—\‘ª
  • ŽOŽ} —S•ã
    ”—ʉ»‡V—Þ‚ð—p‚¢‚½“Œ“ú–{‘åkÐ‚ÉŠÖ‚·‚éˆÓŽ¯’²¸
  • “‡“c •¶
    ¶ŠˆKŠµ‚É‚æ‚éƒCƒ“ƒtƒ‹ƒGƒ“ƒU‚̜늳—¦‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • “c’† –퐶
    ˆ¬—Í‚Ì“Œv‰ðÍ
  • “cç³ ‰ë˜a
    ç—tŒ§‚ÌŒð’ÊŽ–ŒÌ‚ÉŠÖ‚·‚é‰ðÍ
  • ’†–{ «Ži
    ‰Íì…ˆÊ‚ÌŽžŒn—ñƒf[ƒ^‚̉ðÍ
  • –{“c “N•j
    “ˆê‹…‚É‚æ‚鐬Ñ‚ւ̉e‹¿‚Ì“Œv‰ðÍ
  • ‘O“c Œb”üŽq
    Œ»‘㏗«‚Ì‚¨‚ЂƂ肳‚ÜŽ–î‚É‚¨‚¯‚铝Œv‰ðÍ
  • ‘O“c sŽu
    “ŒvŠw“IŽè–@‚É‚æ‚é“s“¹•{Œ§•Ê‚Ì–L‚©‚³‚Ì•ªÍ
CŽm˜_•¶
  • ˆÀ“¡ @Ži
    Extended ridit score type quasi-symmetry model and decomposition of symmetry for square contingency tables
  • ˆäã ‹M”Ž
    Expected mean squared error for some symmetry models in three-way contingency tables
  • ‰|–{ Œ‹ˆß
    On measure of departure from marginal homogeneity for square contingency tables with nominal categories
  • ¬¼ ³–¾
    Measure of departure from double-symmetry for square tables
  • “cŒû —z‰î
    Incomplete double symmetry model for square contingency tables
  • ‰H“c “¿¬
    Masure of departure from marginal point-symmetry for three-way contingency tables
  • ‘‘º ˆê•ä
    Improvement of measures for marginal homogeneity in square contingency tables
  • ¼‘º —D
    On test of quasi point symmetry for square contingency tables
  • ‹{àV Œõ‘¾
    Measure of departure from average cumulative symmetry for square tables having ordinal categories
  • ‘º£ Œ[•ã
    On distance measure of departure from symmetry for multi-way contingency tables
‘²‹Æ˜_•¶
  • ÎŒ´ ‘ñ–
    ƒvƒƒeƒjƒX‘IŽè‚Ì“Œv‰ðÍ
  • ìè ‹¦
    ƒvƒ–ì‹…‘IŽè”\—͂ƃhƒ‰ƒtƒg‡ˆÊ‚Æ‚ÌŠÖ˜A«‚ɂ‚¢‚Ä
  • ‹e’r G˜a
    °‰®‚Ì“Œv‰ðÍ
  • Vé —Ì‘¾
    “ŒvŠw‚É‚¨‚¯‚錟o—͂̃Vƒ~ƒ…ƒŒ[ƒVƒ‡ƒ“‚É‚æ‚錤‹†
  • —é–Ø ‰ël
    “ú–{‘“à‚̉΍Ѓf[ƒ^‚Ì“Œv‰ðÍ
  • ŠÖŒû ˜aÆ
    ƒSƒ‹ƒt‘IŽè‚Ì‘‡—̓‰ƒ“ƒLƒ“ƒO
  • ŠÖ’J —C‘¾
    ƒxƒCƒY“Œv‚É‚æ‚éƒTƒbƒJ[‚̏Ÿ”s—\‘z
  • “c’† —m”V
    ‘åŠw¶‚̐¶ŠˆŽÀ‘Ô‚ÉŠÖ‚·‚镪Š„•\“Œv‰ðÍ
  • ’†–ì ^“o
    2010 FIFA WORLD CUP‚Ì“Œv‰ðÍ
  • “¡‘º W—m
    “s“¹•{Œ§•Êƒf[ƒ^‚ð—p‚¢‚½o¶—¦‚̏d‰ñ‹A•ªÍ
  • áÁ“ˆ Œ’‘¾˜Y
    ¢ŠE‚Ì“S|ŽY‹Æ‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ‘ºã ãđ¾
    ¢ŠEŠe‘‚¨‚æ‚Ñ“ú–{‘“à‚̎Љï•Ûá‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ‹g“c ‰p—¢
    VŒ^ƒCƒ“ƒtƒ‹ƒGƒ“ƒU‚ÌŠ´õ—vˆö‚ÉŠÖ‚·‚铝Œv‰ðÍ
CŽm˜_•¶
  • ¶‹T ´‹M
    Ridit score type quasi-symmetry and decomposition of symmetry for square contingency tables with ordered categories
  • ‰Á“¡ ‹MŽj
    A measure of departure from diagonals-parameter symmetry and its application for square contingency tables
  • ìè —m—S
    Improved measure of departure from point-symmetry for two-way contingency tables
  • —é–Ø Œ³Žq
    Measure of departure from marginal point-symmetry for two-way contingency tables
  • ‚‹´ •¶”Ž
    Double symmetry model and its orthogonal decomposition for multi-Way tables
  • “¿–ì ”Ž‹M
    Wald test statistic for marginal point-symmetry model for multi-way contingency tables
  • •y“c ‘l
    Distance measure of departure from quasi-symmetry and bradley-terry model for square contingency tables with nominal categories
  • •Ÿ“c ^l
    Distance measure of departure from symmetry for square contingency tables with ordered categories
  • –x ‹œŽŸ
    Extension of measure for no three-factor interaction model in three-way contingency tables
  • “’ó rÍ
    Modified point symmetry model for square contingency tables
‘²‹Æ˜_•¶
  • ]’Ë Í•¶
    Žå¬•ª•ªÍ‚É‚æ‚éˆîì‚Ì“Œv‰ðÍ
  • ‘åàV Œb—˜
    ‘½•Ï—ʉðÍ‚É‚æ‚é“s“¹•{Œ§•Ê•½‹ÏŽõ–½‚Ì“Œv‰ðÍ
  • ‰Í‡ —T–ç
    ŽžŒn—ñ‰ðÍ‚É‚æ‚éŠO‘ˆ×‘Ö‚Ì•Ï“®—\‘ª
  • ‹àŒ´ ‹B“T
    ŽRŠx‘˜“ïE…“ï‚Ì“Œv‰ðÍ
  • ¼ Œ[Œá
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‚É‚æ‚éŠCŠO—·s‚̃j[ƒY•ªÍ
  • ŽÂ“c Šo
    ³•û•ªŠ„•\‚ð—p‚¢‚½“ú–{‚̈¬—Í‚Ì“Œv‰ðÍ
  • ŠÑˆä Š°‹I
    Bradley-Terryƒ‚ƒfƒ‹‚É‚æ‚éƒvƒ–ì‹…‚Ì“Œv‰ðÍ
  • –ìè —T—
    ”—ʉ»‡V—Þ‚ð—p‚¢‚½ƒXƒC[ƒc‚ÌšnD‰ðÍ
  • ‹´–{ “Y”T‰Á
    ”—ʉ»ŽO—Þ‚É‚æ‚鍂Zˆê”N¶‚̐i˜H‚ɑ΂·‚él‚¦•û‚̉ðÍ
  • ŽR–{ ’Žj
    «ŠûŠûŽm‚Ì“Œv‰ðÍ
  • ‹g–{ ‘ñ–î
    Žå¬•ª•ªÍ‹y‚уNƒ‰ƒXƒ^[•ªÍ‚É‚æ‚éŒöŠQ‹êîŒ”‚̉ðÍ
  • ŽáŽR “NŽj
    “s“¹•{Œ§•Êƒf[ƒ^‚ÉŠî‚¢‚½”ƍ߂̏d‰ñ‹A•ªÍ
”ŽŽm˜_•¶
  • ŽR–{ hŽi
    Decompositions of Model and Measure for Analysis of Square Contingency Tables
CŽm˜_•¶
  • ¡ˆä Š°l
    Orthogonal decomposition of symmetry into conditional and global symmetry for three-way contingency tables with ordered categories
  • ¬“‡ —Û
    The decompositions for the symmetry and conditional symmetry models in square contingency tables
  • ‰–“c ’¼l
    Test of homogeneity for measure of departure from symmetry in square contingency tables
  • ’Øˆä ®l
    Distance measure of departure from symmetry for square contingency tables with nominal categories
  • –L“c ‹ªŒ÷
    The delta symmetry model and its applications
  • ‰i’J “T”V
    A measure of departure from average symmetry for square contingency tables with ordered categories
  • –쑺 Œ«Ži
    Equivalence test of measures of departure from marginal homogeneity for r ~ r tables
  • ‰H’¹ –¾“ú‰À
    Measures of departure from collapsed symmetry for multi-way contingency tables
  • ¬“‡ ’qº
    A new measure based on sensitivity and specificity
  • ”· —m•½
    Generalized measure of departure from no three-factor interaction model for 2 ~ 2 ~ K contingency tables
  • •ŸŽi „Žj
    A generalization of measure of departure from uniform association in two-way contingency tables
  • –Ñ—˜ ‘å‹I
    A measure of departure from diagonals-parameter symmetry model for square contingency tables
  • ŽR“c ÍŽj
    Generalized measures of departure from symmetry for square contingency tables
‘²‹Æ˜_•¶
  • ˆÀ“¡ @Ži
    ˆãŽt‚̐„ˆÚ‚Æ“s“¹•{Œ§•Ê‚É‚Ý‚½Ž©Ž¡‘̂̑̐§‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ˆäã ‹M”Ž
    ŽžŒn—ñ‰ðÍ‚ð—p‚¢‚½Œ´–ûæ•¨Žæˆø‰¿Ši‚Ì•ªÍ
  • ‰|–{ Œ‹ˆß
    —·s“Œv
  • ¬¼ ³–¾
    ¬’†ŠwZ‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • “cŒû —z‰î
    ƒ|[ƒgƒtƒHƒŠƒI‚É‚¨‚¯‚郊ƒXƒNŠÇ—•]‰¿
  • ’JàV Š²–ç
    ƒTƒ‰ƒuƒŒƒbƒh‚ÌŒŒ“‚ÉŠÖ‚·‚铝Œv‰ðÍ
  • ’·”ö Ž—m
    Œ´–û‰¿Ši“™‚ª‹y‚Ú‚·ƒKƒX”Ì”„—ʂւ̉e‹¿
  • ‰H“c “¿¬
    ‹£”n‚É‚¨‚¯‚é‹RŽè‚̐¬Ñ‚̉ðÍ
  • ‘‘º ˆê•ä
    ‘å‘Š–o‚Ì“Œv‰ðÍ
  • ¼‘º —D
    Žå¬•ª•ªÍ‚É‚æ‚é“S“¹Ž–‹Æ‚Ì“Œv‰ðÍ
  • ‹{àV Œõ‘¾
    Žå¬•ª•ªÍ‹y‚уNƒ‰ƒXƒ^[•ªÍ‚É‚æ‚éƒvƒ–ì‹…‚Ì“Œv‰ðÍ
  • ‘º£ Œ[•ã
    ¶–½•ÛŒ¯”Šw‚ð—p‚¢‚½—˜—¦‚É‚æ‚é•ÛŒ¯—¿E•ÛŒ¯‹à‚̉ðÍ
CŽm˜_•¶
  • ‘qã OK
    Contaminated normal type symmetry model and decomposition of symmetry for square contingency tables
  • ¬—Ñ LŽk
    Conditional marginal cumulative logistic models and decomposition of marginal homogeneity model for multi-way tables
  • ù“‡ —²‹`
    Expected mean squared error of estimators for symmetry and asymmetry models for contingency tables
  • ûü‘ò ãÄ
    Collapsed symmetry model and its decomposition for multi-way tables with ordered categories
  • •x—¢ —É‘¾
    An improved approximate unbiased estimator of log-odds ratio for 2~2 contingency tables
‘²‹Æ˜_•¶
  • ¶‹T ´‹M
    ˆâ“`Žq”­Œ»ƒf[ƒ^‚ɑ΂·‚éANOSVA‚ð—p‚¢‚½“Œv‰ðÍ
  • ‰Á“¡ ‹MŽj
    ‘½d”äŠr–@‚É‚æ‚éVŽÔ“o˜^—¦‚Ì“Œv‰ðÍ
  • ìè —m—S
    ¢ŠE‘å‰ï‚É‚¨‚¯‚éƒoƒŒ[ƒ{[ƒ‹‚Ì“Œv‰ðÍ
  • ŒÜ–¡ •¶”Ž
    ¬Ž™‚Ìšb‘§‚Æšb–‚Ɋւ·‚é‘å‹C‰˜õ•¨Ž¿‚Ì—vˆö•ªÍ
  • ›””n ˆŸŽÑ”ü
    Žå¬•ª•ªÍ‚É‚æ‚éˆã—ÉðÍ
  • “¿–ì ”Ž‹M
    ŽžŒn—ñ‰ðÍ‚É‚æ‚銔‰¿—\‘ª
  • •y“c ‘l
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‹y‚Ñ‘o‘ÎŽÚ“x–@‚É‚æ‚éSUVŽÔŽí‚ÌŽd—l’ñˆÄ
  • •Ÿ“c ^l
    ŽžŒn—ñ‰ðÍ‚ð—p‚¢‚½“ú–{‚̘J“­—Í‚Ì•ªÍ
  • –kžŠ Œ’“ñ
    Žå¬•ª•ªÍ‚É‚æ‚éJƒŠ[ƒO‚̐í—Í•ªÍ
  • –x ‹œŽŸ
    ”—ʉ»‚P—Þ‹y‚Ñ•ªŠ„•\‰ðÍ‚É‚æ‚éƒJƒtƒF‚Ì”„ã“Œv‰ðÍ
  • “’ó rÍ
    ‘¨‘I‹“‚É‚¨‚¯‚é“s“¹•{Œ§•Ê“Š•[—¦‚Ì“Œv‰ðÍ
  • “nç³ —ƒ
    •ªŠ„•\‚¨‚æ‚яd‰ñ‹A•ªÍ‚ð—p‚¢‚½Œð’ÊŽ–ŒÌ‚Ì“Œv•ªÍ
”ŽŽm˜_•¶
  • “c”¨ kŽ¡
    Modeling and decompositions of various symmetry for categorical data analysis
  • ŽR–{ ‰p°
    Measures and decompositions of symmetry model for multi-way contingency tables
CŽm˜_•¶
  • Šâ–{ 䝗¢
    Linear column-parameter symmetry model for square contingency tables: application to decayed teeth data
  • ‘åê ‹I²
    Improved approximate unbiased estimators of measures of asymmetry for square contingency tables
  • •Ð‘q TŒá
    Decompositions of marginal homogeneity model using cumulative logistic models for multi-way contingency tables
  • ŒIŒ´ —Ç•½
    Improved measure of symmetry for square contingency tables with ordered categories
  • “c“ˆ K¹
    A measures of asymmetry of marginal ridits for square contingency tables with ordered categories
  • “c‘º Œ’
    Generalized measure of association for contingency tables
  • ’†“ˆ —Dˆê
    Improvement of power-divergence-type measure of departure from symmetry and comparison of speeds of normal approximation
  • ŒÃ’J ‚ä‚©‚è
    Measure of departure from extended marginal homogeneity for square contingency tables with ordered categories
‘²‹Æ˜_•¶
  • ¡ˆä Š°l
    ƒRƒ“ƒWƒ‡ƒCƒ“ƒg•ªÍ‹y‚Ñ‘o‘ÎŽÚ“x–@‚É‚æ‚鍑“à—·s‚̃j[ƒY•ªÍ‚Æ‚»‚̉ž—p
  • ¬“‡ —Û
    —lX‚ÈŽžŒn—ñƒf[ƒ^ŠÔ‚É‚¨‚¯‚éŠÖ˜A«‚̉ðÍ
  • ²“¡ ˜a^
    ”—ʉ»‚P—Þ‚É‚æ‚éCD‚Ì”„ã–‡”—\‘ª
  • ‰–“c ’¼l
    ‹lí‚ÌŽ‹’®—¦‚ɂ‚¢‚Ä‚Ì•ªÍ
  • ’Øˆä ®l
    Žå¬•ª•ªÍ‚É‚æ‚éƒvƒƒSƒ‹ƒtƒ@[‚̉ðÍ
  • –L“c ‹ªŒ÷
    ‹ó`‚É‚¨‚¯‚éƒJƒtƒF‚Ì”„‚èã‚°“Œv‰ðÍ
  • ’†“‡ “o
    ƒXƒ|[ƒc‘IŽè‚É‚Ý‚é’a¶ŒŽ‚ÌŒXŒü‚Ì“Œv‰ðÍ
  • ‰i’J “T”V
    “s“¹•{Œ§•Êƒf[ƒ^‚ÉŠî‚­ˆã—ÔïŠi·‚ÉŠÖ‚·‚é‰ðÍ
  • –쑺 Œ«Ži
    “Œ•–ì“cüŠe‰w‚É‚¨‚¯‚éƒAƒp[ƒg‚̉ƒÀ‚̏d‰ñ‹A•ªÍ
  • ‰H’¹ –¾“ú‰À
    •ªŠ„•\‚É‚æ‚éƒtƒ@[ƒXƒgƒt[ƒh“X‚Ì”„‚èã‚°ŒXŒü‚̉ðÍ
  • ”· —m•½
    Bradley-Terryƒ‚ƒfƒ‹‚ð—p‚¢‚½“ú–{ƒVƒŠ[ƒY‹y‚уvƒŒ[ƒIƒt‚Ì—\‘z
  • •ŸŽi „Žj
    W’†‘ȉ~‚É‚æ‚é—lX‚È•ª•z‚Ì—LŒø„’è—Ê‚Ì”äŠr
  • –Ñ—˜ ‘å‹I
    •ªŠ„•\‚ð—p‚¢‚½—¬ŽRŽs‚É‚¨‚¯‚é”ƍߋy‚ÑŒð’ÊŽ–ŒÌ‚̉ðÍ
  • ŽR“c ÍŽj
    “s“¹•{Œ§•Ê‚ÌŽ©ŽEŽÒ”‚Ì“Œv‰ðÍ
¦ƒz[ƒ€ƒy[ƒW‚ÉŒfÚ‚Ì‹LŽ–EŽÊ^“™‚Ì“]Ú‚ð‹Ö‚¶‚Ü‚·
© 1993- TOMIZAWA LABORATORY.