チップ間無線電力伝送に向けた送受対称回路構成設計法の研究

7314665 難波 隆一

1. はじめに

近年,積層した大規模集積回路(Large Scale Integrated Circuits:LSI)チップ間に無線による信号と電力の伝送を行う ことでチップ間接続を不要とし,チップ実装の負担を軽減す る方法が検討されている[1]-[4].チップ間無線電力伝送の方 式は大きく分けて磁界結合型と電界結合型の二種類がある. 電界結合型はチップ同士を向かい合わせて伝送するため積層 は2層までに制限されるが[5],磁界結合型に比べ,位置ずれ に強い[6],電磁干渉による影響が少ない[7]などの利点がある. 本稿ではチップ間無線電力伝送に電界結合を用い,送受対称 回路構成を用いた設計法の検討を行う.

2. 電界結合型無線電力伝送

一般的な電界結合型無線電力伝送回路[8]を回路機能ブロ ックで表現した図を図1に示す. V_D, C_c, C_g, R はそれぞれ 直流電源,結合容量,対地容量,負荷抵抗を示す.直流入力 された電力は電力増幅器を通ることで直流から高周波への電 力変換が実現される.その後高周波へ変換された電力は整合 回路を通り,結合容量 C_cに供給され,電界結合により受信側 回路に誘起される.誘起された高周波電力は整合回路を通り 整流回路にて直流電力に変換される.従来回路の欠点として 入出力整合回路の設計が複雑,伝送系にかかる電圧が考慮さ れてないといった問題が挙げられる.

そこで本稿では従来の設計より簡易かつ伝送系にかかる電 圧を考慮した送受対称回路を提案する.

図1 一般的な電界結合型無線電力伝送

3. 送受対称回路

3.1. 提案回路

時間反転双対性により電力増幅器と整流器の回路を共用化 する研究が報告されている[9]. この原理を用い、図1の受信 側の整流回路は送信側の電力増幅器を用いて表す.このとき, 送信回路と受信回路は同一のインピーダンスとなり,図2に 示すように1-1'を中心に左右対称な回路として表すことがで きる.提案した対称回路は送信側,受信側それぞれ同一素子 を用いて構成されているため,回路設計が容易である.本稿 では送受の電力増幅器および整流器を低インピーダンスの電 源および負荷抵抗で表し,対称回路と仮定して研究を行った.

3.2. 送受対称回路の設計法

提案回路を設計するにあたり,1-1'から見た受信回路のイン ピーダンスを求める. 等価回路図を図 3(a)に示す. Cc', Cg, L₁, C₁, R はそれぞれ分割された結合容量, 対地容量, 整合 回路のインダクタとキャパシタンス, 負荷抵抗を表す. 1-1' から見たインピーダンス Z₁₁を(1)式に示す. このとき図 3(a) の Cg, L₁並列回路は図 3(b)に示すように式の簡略化のため誘 導性素子として直列回路で表現する.

$$Z_{11'} = \frac{RX'_{L1}{}^2}{R^2 + (X'_{L1} + X_{c1})^2} + j\frac{R^2X'_{L1} + X'_{c1}X'_{L1} + X'_{c1}X'_{L1}}{R^2 + (X'_{L1} + X'_{c1})^2} + jX'_{cc}}$$
(1)

ここで、 X_{Lr} は直列変換した誘導性素子のリアクタンス ω Lr、 X_{C1} はキャパシタのリアクタンス $-1/\omega$ C1、 X_{Cc} は結合容量の

リアクタンス- $1/\omega C_e$ 、 ω は角周波数を示す.次に Im(Z_{11})=0 を X_{L1}について解く. Im は Z_{11} の虚部を取り出すことを示す.

$$X'_{L1} = \frac{-R^2 - X_{c1}^2 - 2X_{c1}X_{cc}' \mp \sqrt{R^4 + 2R^2X_{c1}^2 + X_{c1}^4 - 4R^2X_{cc}'^2}}{2(X_{cc}' + X_{c1})}$$
(2)

ただし成立条件として

$$R^4 + 2R^2 X_{c1}^2 + X_{c1}^4 - 4R^2 X_{c_c}^{\prime 2} > 0 \tag{3}$$

(2)式より, 整合回路 L₁, C₁の最適な組み合わせが求まり, (3) 式より, そのときの C₁の有効範囲が求まる.

(b)図3 1-1'から見た受信回路の等価回路図

3.3. 伝送系

式(2)から L₁, C₁の最適な組み合わせを求めるためには, 初期値として負荷抵抗と伝送系のパラメータを決めねばなら ない.本節では想定する伝送系について説明する.

LSI チップ間無線電力伝送を実験によって実現するには,時 間的及び技術的制約がかかる.そこで,本研究ではLSI チッ プに実装した形ではなく 10 倍の大きさにスケールを拡大し た形で模擬実験を行う.図4に想定した伝送系の簡単な概略 図を示す.伝送系は6層のプリント基板(FR4)で構成されて いる.top layer から供給された電力はビアホールを通り layer3の送電側電極へ供給され,電界結合により layer4 の受 電側電極に電力を誘起する.誘起された電力はビアホールを 通り bottom layer へ供給される.このとき, layer2 と layer5 は電極間に発生する電界が周囲に影響を与えぬよう,静電シ ールドの役割を果たしている.想定した伝送系の諸元を表 1 に示す.

表1 伝送系の諸元

結合容量:Cc	0.94[pF]
対地容量:C _g	0.94[pF]
基板誘電率 : ε _r	4.7(F m ⁻¹)
動作周波数:f	100[MHz]

3.4. 伝送系の端子間電圧との関係

3.3 節で想定した伝送系の諸元を用い,(3)式より求めた C₁ の有効範囲は 0<C₁<38.6pF となる.このとき負荷抵抗 R は 1Ωとする.上記条件の C₁を(2)式に代入することで,図5に 示すように整合回路 L₁, C₁の最適な組み合わせが求まる. 解は+解と-解の二通りある.

次に,(2)式より求めた L₁,C₁の最適組み合わせと伝送系 の端子間電圧 V_{Cc}との関係を回路シミュレーションによって 評価する.シミュレーション回路を図 6,諸元を表 2 に示す. 交流電源電圧のピーク値 V_{ac},動作周波数 f はそれぞれ 1V, 100MHz とし,C₁,L₁ は図 5 に示すように変化させた.

図7にシミュレーション結果を示す. +解と-解の結果は ほぼ一致した. 伝送系の端子間電圧 V_{Cc}の最小値は, +解の 場合 C₁=38pF, L₁=63.2nH のとき 20.9V. 一解の場合, C₁ =38pF, L₁=63.9nH のとき 20.9V となった. これらの結果 から, 伝送系の端子間電圧を最小にする最適設計が求まる.

表2 諸元

送信部		伝送部		受信部	
交流電源:Vac	1[V]	, , , , , , , , , , , , , , , , , , ,	· 索县 .	キャパシタンス:	変化
内部抵抗:R _i	1[Ω]	Ce (0.94[pF]	C1	
キャパシタンス: C1	変化			インダクタンス: La	変化
インダクタンス:L1	変化	対地容量:	0.94[pF]		
動作周波数:f	100[MHz]	Cg	olo lipi j	負荷抵抗:R	1[Ω]

3.5.インピーダンス特性

提案した送受対称回路におけるインピーダンス特性を回路 シミュレーションによってスミスチャート上で確認する.シ ミュレーション回路図は前節と同様に図 6,諸元は表 3 に示 す.L₁, C₁は前節で求めた値を用いる.対称線 1-1'からみた 受信側のインピーダンス Z₁₁特性を図 8(a)に,電源側から見 たインピーダンス Z₁₀を図 8(b)に示す.図 8(a)の結果より, 受信側回路はインピーダンス変換としての役割を果たしてお り,インピーダンス Z₁₁を高くすることで負荷に送る電力を 増やしている.そして図 8(b)に示すように,受信側回路によ って増大したインピーダンスは送信側回路を挿入することで, スミスチャート上で図 8 と上下対称な軌跡を描き,元のイン ピーダンスに戻る.これらの結果により,提案した送受対称 回路はインピーダンス整合が成立していることが確認される.

表3 詞	諸元
------	----

送信部		伝送部		受信部	
交流電源:V _{ac}	1[V]	結合容量:Ce	_c 0.94[pF]	キャパシタンス:C1	38[pF]
内部抵抗:R _i	1[<u>Q]</u>				
キャパシタンス : C1	38[pF]			インダクタンス:L1	63.2[nH]
インダクタンス:Lı	63.2[nH]	対地容量:Cg	0.94[pF]		
動作周波数:f	100[MHz]			負荷抵抗:R	1[<u>Ω]</u>

(b) 図8 インピーダンス特性

4. 極板間距離依存性

4.1. 実装する際の問題点

提案した回路をプリント基板上に実装する際,極板間の距離ずれ,インダクタの寄生抵抗による性能劣化の影響などの 問題が挙げられる.そこで,インダクタの寄生抵抗を考慮し て設計し,極板間距離の位置ずれを誤差±50%としたときの 入力電力 P_i,出力電力 P_o,電力効率ηをシミュレーションと 実験で評価する.

本研究ではインダクタを直径 0.5mm のポリエステル銅線 を用いた空芯ソレノイドコイルで実現する.試作した二つの インダクタ L₁,L₂をそれぞれ LCR メータ(横河・ヒューレッ トパッカード社 4275A)で測定することで寄生抵抗を求める. 設計値と測定値の諸元を表 4 に示す.L は設計値のインダク タンス,L₁,L₂は測定値のインダクタンス,a はコイル直径, N はコイルの巻数としている.設計値のインダクタンスは 2.5 節で求めた値となるよう式(4)のソレノイドコイルの理論式 を用いて設計したが,測定値は 10nH ほど大きくなった.

kuSN ²			
$L = \frac{\pi \mu \sigma \pi}{1}$	k:長岡係数	S:コイルの断面積[m²]	(4)
l	N: 巻数	<i>l</i> :コイル長[m]	

設計値		実測値		
インダクタンス : L	64[nH]	インダクタンス:Lı	73.1[nH]	
ってル古祭・	6.5[mm]	寄生抵抗:R _{L1}	0.054[Ω]	
コイル直径 : a		インダクタンス:L ₂	72.7[nH]	
卷数:N	2.5	寄生抵抗:R _{L2}	0.055[Ω]	

表4 諸元

4.2. 回路シミュレーション

試作したインダクタのパラメータを用い,提案回路の極板 間距離依存性について回路シミュレーションにより評価する. シミュレーション回路を図9に,諸元を表5に示す.極板間 距離は50~150μm変化し,それに応じて結合容量Ccも変 化する. C1, C2は第2章の(2)式より+解と-解の二通り導 出した.

図 10(a),(b),(c)にそれぞれ極板間の距離が変化したときの 入力電力 Pi, 出力電力 Po, 電力効率 η のシミュレーション結 果を示す.図 10の結果より、一解のとき極板間距離に依存せ ず入力電力 Pi,出力電力 Po,電力効率ηは一定となることが 分かった.次に、これらの原因について考察する.図6の対 称線 1-1'からみたインピーダンスZ11'の抵抗分 Re(Z11')、 リアクタンス成分の絶対値 | Im(Z11') | が極板間距離に対し てどのように変化するか図 11 に示す.図 11 より、抵抗分 Re(Z11')は極板間距離に依存せず一定の値となり、対するリ アクタンス成分の絶対値 | Im(Z11') | は極板間距離が 100 μ m から離れるほど大きくなっている.このとき、+解と一解の 結果を比較すると、一解のときの方が Re(Z11')は結合容量 のインピーダンスの大きさ 1/ω Cc と比べ大きいことが分か る.これはリアクタンス成分の変化、つまり結合容量の変化 に対する影響が少ないことを示している.

表5 諸元

送信	部	伝送部		伝送部		受信部	
交流電源:Vac	1[V]	_ 結合容量:C _e		キャパシタンス: Co	+解:28.7 [pF]		
内部抵抗:R _i	1[Ω]			伝送距離に	111 17 17 102	一解:30.2[pF]	
キャパシタンフ・ヘ	+解:27.9[pF]		応じて変化	インダクタンス:L2	72.7[nH]		
44777777.0	-解:29.4[pF]						
インダクタンス : L ₁	73.1[nH]	- 対地容量:Cg		寄生抵抗:R _{L2}	0.055[Ω]		
寄生抵抗:R _{L1}	0.054[Ω]		対地容量:Cg	0.9[pF]			
動作周波数:f	100[MHz]			負荷抵抗:R	1[<u>Ω]</u>		

図10 シミュレーション結果

図11 Z₁₁の抵抗分 Re(Z₁₁)とリアクタンス成分の 絶対値 | Im(Z₁₁) |

4.3. 実験

試作した送受対称回路の基板構造,実験図をそれぞれ図 12(a),(b)に示す.回路構成は前述のシミュレーション回路と 同様である.基板の端に SMA コネクタを取り付け,ネット ワークアナライザ(Agilent 社 E5071B)により計測した.極板 間距離依存性をみるため,伝送間にポリエチレンを挟み,そ の厚みを変え,透過特性(S21)を評価した.

実験結果とシミュレーション結果の比較を図 13 に示す.図 13 より,周波数特性は一致,極板間距離依存性は小さいこと が示されたが,実験結果の透過特性の最大値はシミュレーシ ョンの結果と比べて約 25dB と大幅に劣化した. 原因として、極板間距離が想定する距離より大幅に離れてし まっている、図 12(b)に示すように送受基板のグラウンド間を 接続するワイヤのインダクタンスと寄生抵抗による影響、実 装したインダクタが所望の値と異なるなどが考えられる. こ れらの影響を考慮し、実験系において電極間が短絡状態であ るとして、間にアルミ箔を挟んだ場合と、シミュレーション 上の設計回路にケーブルの等価回路を挿入し、インダクタン スの値と極板間距離変えたときの場合を比較する. シミュレ ーション上の等価回路とケーブルの諸元をそれぞれ図 14、表 6に示し、実験とシミュレーションの比較結果を図 15に示す. 図 15に示すようにシミュレーション上の回路において、 L1,L2 がそれぞれ設計値の+10、+25%の誤差が生じ、極板 間距離が 150μmのときの結果と、極板間をアルミ箔で短絡 したときの実験結果が一致した. このことから、極板間距離 とインダクタを上手く調整することができれば、提案回路は

図12 試作した回路の基板構造と実験図

図13 実験とシミュレーションの比較

表5 送受基板のグラウンド間を接続する

図15実験とシミュレーションの比較

4. まとめ

本稿では、チップ間無線電力伝送に電界結合型を用い、入 出力整合が容易かつ伝送系にかかる最大電圧を考慮する送受 対称回路構成を用いた設計法の提案を行った.

回路シミュレーションの結果,提案回路は入力電力 Pi,出 力電力 Po,電力効率 η は極板間距離の変化(50~150 µ m)に 対する依存が少ないことを示した.実験によりシミュレーシ ョンの妥当性を確認した結果,透過特性は劣化したが,極板 間距離と素子の値を上手く調整することで提案回路は実現で きると予想される.

今後の課題として,電力増幅器を用いての評価,LSIチッ プ上に実装した形での評価,電力・信号同時伝送時の評価な どが考えられる.

謝辞

本研究は電気通信普及財団の研究調査助成により実施さ れたものである.また,東京大学大規模集積システム設計教 育研究センターを通し、アジレント・テクノロジー株式会社

の協力で行われた.

文献

- K. Niitsu, Y.Shimazaki, Y.Sugimori, et al., "An inductive-coupling link for 3D integration of a 90nm CMOS processor and a 65nm CMOS SRAM," ISSCC Dig. Tech. Papers, pp.480-481, Feb.2009.
- [2] S. Kim, M. Kim, S. Kong, J.J. Kim, and J. Kim, "On-chip Magnetic Resonant Coupling with Multi-Stacked Inductive Coils for Chip-to-chip Wireless Power Transfer (WPT)," Electromagnetic Compatibility Symposium, August 2012.
- [3] E. Culurciello and G. Andreou, "Capacitive inter-chip data and power transfer for 3-D VLSI," IEEE Trans. Circuits Sys. II, Exp. Briefs, vol. 53, no. 12, pp. 1348–1352, Dec. 2006.
- [4] A. Fazzi, R. Canegallo, L. Ciccarelli, L. Magagni, F. Natali, E. Jung, P. Rolandi, and R. Guerrieri, "3-D capacitive interconnections with monoand bi-directional capabilities," IEEE J. Solid-State Circuits, vol. 43, no. 1, pp. 275–284, Jan. 2008.
- [5] 吉川公磨, "LSI チップ間ワイヤレス接続技術の研究," 技術情報誌 TELECOM FRONTIER No.74 2012 WINTER.
- [6] 小丸尭,秋田秀範,"電界結合を用いた無線電力伝送に おける結合係数の位置特性評価,"信学技報, vol.113, July.2013.
- [7] 増田満,楠正弘,小原大輝,他,"電界共振結合型ワイ ヤレス電力伝送,"2013 古河電工時報,vol,132, pp43-47, Sept.2013.
- [8] A.Sepahvand, "High power transfer density and high efficiency 100 MHz capacitive wireless power transfer system," IEEE COMPEL, July 2015.
- [9] 本城和彦,石川亮,"マイクロ波超高効率電力増幅・整 流回路の共用化によるスマートワイヤレスモジュール," 電子情報通信学会総合大会,BCI-3-5,2015年3月.

本研究に対する学会発表など

(A) 査読付き論文

なし

(B) 査読付き小論文

なし

(C) 査読なし論文

<u>難波隆一</u>, 楳田洋太郎, 小澤佑介:「電界結合共振型無線 電力伝送における共振状態最適化制御の提案」, 電子情報 通信学会マイクロ波研究会, 2015 年 4 月 17 日 <u>難波隆一</u>, 楳田洋太郎, 小澤佑介:「電界結合共振型無線 電力伝送における送受対称回路構成の検討」, 電子情報通 信学会マイクロ波研究会, 2015 年 3 月 4 日発表予定

(D) 学会大会等の口頭発表・ポスター発表

なし

- (E) 特許
 - なし