「第28回日本統計学会賞」受賞記念講演

分割表における対称性の解析

富澤貞男

明星大学 常勤教授 東京理科大学 嘱託教授 東京理科大学 名誉教授

2023年9月4日 統計関連学会連合大会 京都大学

最初に

(1) 自己紹介

次に

(2) 研究内容の紹介

(自己紹介)

富澤貞男

(出身) 千葉県

(学歴)

昭和50年3月: 千葉県立安房高等学校 卒業

昭和54年3月: 東京理科大学理工学部数学科 卒業 (宮川研)

昭和56年3月: 同大学理学専攻科数学専攻 修了 (宇喜多研)

昭和58年3月: 同大学大学院理工学研究科情報科学専攻

修士課程 修了 (国澤研)

昭和61年3月: 同専攻

博士後期課程 修了 (国澤研)

(学位) 理学博士 (昭和61年3月) 東京理科大学

(専門分野) 数理統計学 (特に,分割表解析,多変量解析)

(学部2年の統計学との出会い)

科目名 「数理統計学」(2年, 通年, 1976年)

(教科書)

小川潤次郎, 池田貞雄 (1963年): 「近代統計入門」(森北出版)

(参考書)

小川潤次郎 (1954年):「近代数理統計学序説」(恵文堂)

竹内 啓 (1963年): 「数理統計学」(東洋経済)

H. Cramer (1946): Mathematical Methods of Statistics (Princeton Univ. Press) (訳本あり)

S. S. Wilks (1962): Mathematical Statistics (Wiley) (訳本あり)

学部, 専攻科

T. W. Anderson (1958): An Introduction to Multivariate Statistical Analysis (Wiley) A. M. Kshirsagar (1972): Multivariate Analysis (Dekker) など 論文

大学院 修士課程 (1981~)

Y. M. Bishop, S. E. Fienberg and P. W. Holland (1975): Discrete Multivariate Analysis; Theory and Applications (Springer) 論文

大学院 博士後期課程 (1983~)

A. Agresti (1984): Analysis of Ordinal Categorical Data (Wiley) など論文

(職歴)

昭和61年4月: 東京理科大学理工学部情報科学科 助手

平成 4年4月: 同学科 講師

平成 9年4月: 同学科 助教授

平成13年4月: 同学科 教授

令和 4年3月: 定年

令和 4年4月: 明星大学情報学部情報学科 常勤教授

令和 4年4月: 東京理科大学理工学部情報科学科 嘱託教授

(現職)

令和 5年4月: 明星大学 データサイエンス学環

兼 情報学部情報学科 常勤教授

(兼務)

令和 5年4月: 東京理科大学創域理工学部情報計算科学科 嘱託教授

令和 4年 6月: 東京理科大学 名誉教授

(研究の紹介)

分割表における対称性の解析

- 1. はじめに
- 2. 対称性、非対称性のモデル
- 3. 対称モデルの分解
- 4. 非対称モデルの分解
- 5. 適合度検定と例
- 6. 多元表における対称性モデルと分解
- 7. 対称性の隔たりを測る尺度
- 8. 多変量確率密度関数の対称性と分解

(なお,8は分割表解析ではないです)

§ 1. はじめに

表1. 英国の女性裸眼視力データ (Stuart, 1955) Biometrika, vol.42, pp.412-416

		左眼			
	良い	やや良い	い悪やや悪い	悪い	計
右眼	(1)	(2)	(3)	(4)	
良い (1)	1520	266	124	66	1976
やや良い (2)	234	1512	432	78	2256
やや悪い (3)	117	362	1772	205	2456
悪い (4)	36	82	179	492	789
計	1907	2222	2507	841	7477

表2. 英国の父親とその息子の職業の社会的地位

(Agresti, 1984; Analysis of Ordinal Categorical Data (Wiley), p.206)

			息子			
	高い				低い	計
父親	(1)	(2)	(3)	(4)	(5)	
高い (1)	50	45	8	18	8	129
(2)	28	174	84	154	55	495
(3)	11	78	110	223	96	518
(4)	14	150	185	714	447	1510
低い (5)	3	42	72	320	411	848
計	106	489	459	1429	1017	3500
· · ·						

正方r×r分割表

独立モデル

$$p_{ij} = p_{i \bullet} p_{\bullet j} (i = 1, ..., r; j = 1, ...r), \quad p_{i \bullet} = \sum_{t=1}^{r} p_{it}, p_{\bullet j} = \sum_{s=1}^{r} p_{sj}$$

$$\theta_{(i < j; s < t)} = 1$$
 ただし、 $\theta_{(i < j; s < t)} = \frac{p_{is} p_{jt}}{p_{js} p_{it}}$ (オッズ比)

	1	2	3	4	
1	p_{11}	p_{12}	p_{13}	p_{14}	$p_{1\bullet}$
2	p_{21}	p_{22}	p_{13} p_{23}	p_{24}	$p_{2\bullet}$
3	p_{31}	p_{32}			$p_{3\bullet}$
4	p_{41}	p_{42}	p_{43}	p_{44}	p_{4ullet}
	$p_{ullet 1}$	$p_{ullet 2}$	$p_{ullet 3}$	$p_{ullet 4}$	1

§ 2. 対称性に関するモデル

(1) 対称モデル Bowker (1948), J. Amer. Statist. Assoc., 43, 572-574

$$p_{ij} = p_{ji} (i \neq j)$$

$$(1) \quad (2) \quad (3) \quad (4) \quad \Rightarrow$$

$$(1) \quad p_{11} \quad p_{12} \quad p_{13} \quad p_{14} \quad p_{1\bullet}$$

$$(2) \quad p_{21} \quad p_{22} \quad p_{23} \quad p_{24} \quad p_{2\bullet}$$

$$(3) \quad p_{31} \quad p_{32} \quad p_{33} \quad p_{34} \quad p_{3\bullet}$$

$$(4) \quad p_{41} \quad p_{42} \quad p_{43} \quad p_{44} \quad p_{4\bullet}$$

$$\Rightarrow \quad p_{\bullet 1} \quad p_{\bullet 2} \quad p_{\bullet 3} \quad p_{\bullet 4} \quad 1$$

(2) 準対称モデル

Caussinus (1965); Ann. Fac. Sci. Univ., Toulouse, 29, 77-182

$$p_{ij} = \mu \alpha_i \beta_j \gamma_{ij}, \qquad \gamma_{ij} = \gamma_{ji}$$

$$\Leftrightarrow$$

$$p_{ii} \qquad \delta_i$$

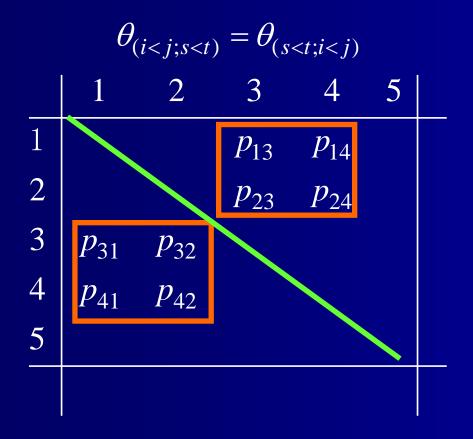
$$\frac{p_{ij}}{p_{ji}} = \frac{\delta_j}{\delta_i} \qquad (i < j)$$

$$\Leftrightarrow$$

$$p_{ij} p_{jk} p_{ki} = p_{ji} p_{kj} p_{ik} \quad (i < j < k)$$

$$\theta_{(i < j; s < t)} = \frac{p_{is} p_{jt}}{p_{js} p_{it}}$$
 (オッズ比)

準対称モデル



(3) 周辺同等モデル Stuart (1955), Biometrika, 42, 412-416

$$p_{i\bullet} = p_{\bullet i} (i = 1, ..., r)$$

$$\uparrow z \uparrow \tilde{z} \downarrow$$

(4)条件付き対称モデル McCullagh (1978), Biometrika, 65, 413-418

$$p_{ij} = \Delta p_{ji} (i < j)$$

$$= P(X = i, Y = j | X < Y)$$

$$= P(X = j, Y = i | X > Y)$$

$$(1) \quad (2) \quad (3) \quad (4) \quad \stackrel{=}{\exists} \uparrow$$

$$(1) \quad p_{11} \quad p_{12} \quad p_{13} \quad p_{14} \quad p_{1\bullet} \quad \stackrel{+}{\Rightarrow} i = \Delta = 100$$

$$(2) \quad p_{21} \quad p_{22} \quad p_{23} \quad p_{24} \quad p_{2\bullet}$$

$$(3) \quad p_{31} \quad p_{32} \quad p_{33} \quad p_{34} \quad p_{3\bullet}$$

$$(4) \quad p_{41} \quad p_{42} \quad p_{43} \quad p_{44} \quad p_{4\bullet} \quad \triangle \stackrel{\rightleftharpoons}{\rightleftharpoons}$$

$$\stackrel{=}{\exists} \uparrow \quad p_{\bullet 1} \quad p_{\bullet 2} \quad p_{\bullet 3} \quad p_{\bullet 4} \quad 1$$

(5) 対角パラメータ対称モデル Goodman (1979), Biometrika, 66, 413-418

$$p_{ij} = \Delta_{j-i} \ p_{ji} (i < j)$$

(6) 線形対角パラメータ対称モデル **Agresti** (1983), Stat. Prob. Letters, vol.1, pp.313-316

$$p_{ij} = \Delta^{j-i} p_{ji} (i < j)$$

(1) (2) (3) (4) 計
(1)
$$p_{11}$$
 p_{12} p_{13} p_{14} $p_{1\bullet}$
(2) p_{21} p_{22} p_{23} p_{24} $p_{2\bullet}$
(3) p_{31} p_{32} p_{33} p_{34} $p_{3\bullet}$
(4) p_{41} p_{42} p_{43} p_{44} $p_{4\bullet}$
計 $p_{\bullet 1}$ $p_{\bullet 2}$ $p_{\bullet 3}$ $p_{\bullet 4}$ 1

線形対角パラメータ対称(LDPS)モデルと正規分布との関係

2 変量正規分布

$$E(X) = \mu_1, \quad E(Y) = \mu_2, \quad V(X) = V(Y) = \sigma^2, \quad C(X,Y) = \rho$$

密度関数をf(x,y)とすると

$$\frac{f(x,y)}{f(y,x)} = \exp\left[\frac{(\mu_1 - \mu_2)}{\sigma^2(1-\rho)}(x-y)\right]$$

LDPSモデルは $p_{ij}/p_{ji} = \Delta^{j-i}(i < j)$

潜在分布として分散の等しい正規分布が 想定される場合、それから得られた正方分割表に LDPSモデルはよく適合すると思われる (7)拡張線形対角パラメータ対称モデル Tomizawa (1991); Metron, 49, 401-409

$$p_{ij} = \delta^{j-i} \gamma^{(j-i)(i+j)/2} p_{ji} (i < j)$$

(1) (2) (3) (4) 計
(1)
$$p_{1x}$$
 p_{12} p_{13} p_{14} $p_{1 \bullet}$ オッズ比 γ
(2) p_{21} p_{22} p_{23} p_{24} $p_{2 \bullet}$ $\phi_k = \delta \gamma^{k/2} (k = i + j)$
(3) p_{31} p_{32} p_{33} p_{34} $p_{3 \bullet}$ $p_{3 \bullet}$ ϕ_k^2 倍
(4) p_{41} p_{42} p_{43} p_{44} $p_{4 \bullet}$
計 $p_{\bullet 1}$ $p_{\bullet 2}$ $p_{\bullet 3}$ $p_{\bullet 4}$ 1 ϕ_k 倍

拡張線形対角パラメータ対称(ELDPS)モデルと 正規分布との関係

2 変量正規分布

$$E(X) = \mu_1, \quad E(Y) = \mu_2, \quad V(X) = \sigma_1^2, \quad V(Y) = \sigma_2^2, \quad C(X,Y) = \rho$$
 $f(x,y) / f(y,x) =$

$$\exp\left[\frac{-1}{2(1-\rho^2)}(x-y)\left\{\left(\frac{1}{\sigma_1^2} - \frac{1}{\sigma_2^2}\right)(x+y) - 2\left(\frac{\mu_1}{\sigma_1^2} - \frac{\mu_2}{\sigma_2^2}\right) - \frac{2\rho(\mu_1 - \mu_2)}{\sigma_1\sigma_2}\right\}\right]$$

ELDPSモデルは
$$p_{ij} / p_{ji} = \delta^{j-i} \gamma^{(j-i)(i+j)/2} (i < j)$$

潜在分布として分散が等しいとは限らない正規分布が 想定される場合、それから得られた正方分割表に ELDPSモデルはよく適合すると思われる (8) 累積対角パラメータ対称モデル Tomizawa (1993) Biometrics, 49, 883-887

$$G_{ij} = P(X \le i, Y \ge j), G_{ji} = P(X \ge j, Y \le i), (i < j)$$
 とおいて

$$G_{ij} = \Delta_{j-i}G_{ji}(i < j)$$

$$G_{12} \quad G_{24}$$

$$(1) \quad (2) \quad (3) \quad (4) \quad \overrightarrow{\exists} +$$

$$G_{21} \quad (1) \quad p_{11} \quad p_{12} \quad p_{13} \quad p_{14} \quad p_{1\bullet}$$

$$G_{42} \quad (2) \quad p_{21} \quad p_{22} \quad p_{23} \quad p_{24} \quad p_{2\bullet}$$

$$G_{42} \quad (3) \quad p_{31} \quad p_{32} \quad p_{33} \quad p_{34} \quad p_{3\bullet}$$

$$(4) \quad p_{41} \quad p_{42} \quad p_{43} \quad p_{44} \quad p_{4\bullet}$$

$$\overrightarrow{\exists} + \quad p_{\bullet 1} \quad p_{\bullet 2} \quad p_{\bullet 3} \quad p_{\bullet 4} \quad 1$$

性質 $\Delta_1 > 1 \Leftrightarrow P(X \leq i) > P(Y \leq i), (i = 1, ..., r - 1)$

(9)累積線形対角パラメータ対称モデル

Miyamoto, Ohstuka and Tomizawa (2004); Biometrical Journal 46, 664-674

$$G_{ij} = \Delta^{j-i} G_{ji} (i < j)$$

(10)累積準対称モデル

Miyamoto, Ohstuka and Tomizawa (2004)

$$G_{ij} = \mu \alpha_i \beta_j \Psi_{ij} (i \neq j), \qquad \Psi_{ij} = \Psi_{ji}$$

$$\Leftrightarrow$$

$$G_{ij}G_{jk}G_{ki} = G_{ji}G_{kj}G_{ik} (i < j < k)$$

§ 3. 対称モデルの分解

対称モデル(S)

$$p_{ij} = p_{ji} (i \neq j)$$

準対称モデル(QS)

$$p_{ij} = \mu \alpha_i \beta_j \gamma_{ij}, \quad \gamma_{ij} = \gamma_{ji}$$

周辺同等モデル (MH) $p_{iullet}=p_{ullet i}(i=1,...,r)$

定理 1. (Caussinus, 1965)

Sモデル ⇔ QSモデル ∩ MHモデル

条件付き対称モデルはどのように分解できるか?

§ 4. 非対称性モデル分解

条件付き対称モデル McCullagh (1978)

$$p_{ij} = \Delta p_{ji} (i < j)$$

$$= P(X = i, Y = j | X < Y)$$

$$= P(X = j, Y = i | X > Y)$$

$$(1) \quad (2) \quad (3) \quad (4) \quad \stackrel{=}{\exists} \uparrow$$

$$(1) \quad p_{11} \quad p_{12} \quad p_{13} \quad p_{14} \quad p_{1\bullet} \quad \stackrel{+}{\exists} \vdash \Delta = 100$$

$$(2) \quad p_{21} \quad p_{22} \quad p_{23} \quad p_{24} \quad p_{2\bullet}$$

$$(3) \quad p_{31} \quad p_{32} \quad p_{33} \quad p_{34} \quad p_{3\bullet}$$

$$(4) \quad p_{41} \quad p_{42} \quad p_{43} \quad p_{44} \quad p_{4\bullet} \quad \Delta \stackrel{\leftarrow}{\boxminus}$$

$$\stackrel{=}{\exists} \uparrow \quad p_{\bullet 1} \quad p_{\bullet 2} \quad p_{\bullet 3} \quad p_{\bullet 4} \quad 1$$

拡張 準対称モデル Tomizawa (1984) J. Japan Statist. Soc., 14, 35-42

$$p_{ij} = \mu \alpha_i \beta_j \psi_{ij}, \qquad \psi_{ij} = \gamma \psi_{ji} (i < j)$$

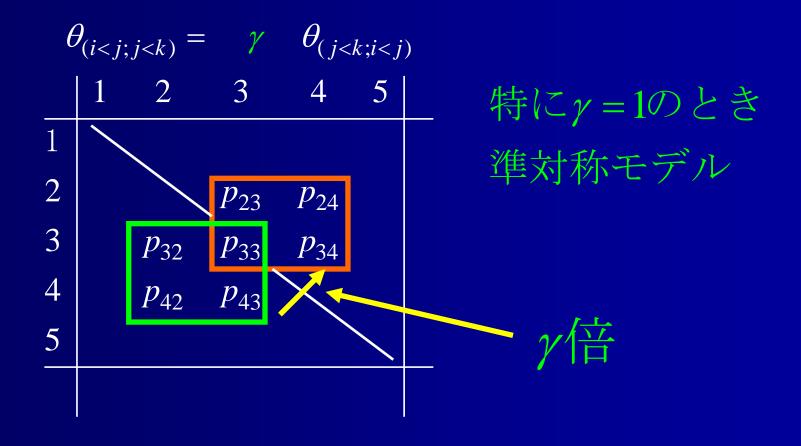
$$\Leftrightarrow$$

$$p_{ij} p_{jk} p_{ki} = \gamma p_{ji} p_{kj} p_{ik} (i < j < k)$$

特に $\gamma=1$ のとき 準対称モデル (Caussinus, 1965)

$$\theta_{(i < j; s < t)} = \frac{p_{is} p_{jt}}{p_{js} p_{it}} \qquad (オッズ比)$$

拡張準対称モデル



拡張周辺同等モデル Tomizawa (1984)

特にδ=1のとき 周辺同等モデル

$$p_{i\bullet}^{(\delta)} = p_{\bullet i}^{(\delta)}(i = 1, ..., r)$$

$$p_{i\bullet}^{(\delta)} = \delta \sum_{t=1}^{i-1} p_{it} + \sum_{t=i}^{r} p_{it}, \quad p_{\bullet i}^{(\delta)} = \sum_{s=1}^{i} p_{si} + \delta \sum_{s=i+1}^{r} p_{si}$$

$$(1) \quad (2) \quad (3) \quad (4) \quad \stackrel{\ddagger}{\exists} \uparrow$$

$$(1) \quad p_{11} \quad p_{12} \quad p_{13} \quad p_{14} \quad p_{1\bullet}^{(\delta)}$$

$$(2) \quad \delta p_{21} \quad p_{22} \quad p_{23} \quad p_{24} \quad p_{2\bullet}^{(\delta)}$$

$$(3) \quad \delta p_{31} \quad \delta p_{32} \quad p_{33} \quad p_{34} \quad p_{3\bullet}^{(\delta)}$$

$$(4) \quad \delta p_{41} \quad \delta p_{42} \quad \delta p_{43} \quad p_{44} \quad p_{4\bullet}^{(\delta)}$$

$$\stackrel{\dagger}{\exists} \uparrow \quad p_{\bullet 1}^{(\delta)} \quad p_{\bullet 2}^{(\delta)} \quad p_{\bullet 3}^{(\delta)} \quad p_{\bullet 4}^{(\delta)}$$

拡張周辺同等モデル (別表現)

$$G_{i,i+1} = P(X \le i, Y \ge i+1), G_{i+1,i} = P(X \ge i+1, Y \le i)$$
 とおいて

$$G_{i+1} = \delta G_{i+1,i} (i = 1, ..., r-1) \qquad G_{12}$$

$$(1) \qquad (2) \qquad (3) \qquad (4) \qquad \overrightarrow{\exists} + \qquad G_{23}$$

$$(2) \qquad p_{11} \qquad p_{12} \qquad p_{13} \qquad p_{14} \qquad p_{1\bullet} \qquad G_{23}$$

$$(3) \qquad p_{21} \qquad p_{22} \qquad p_{23} \qquad p_{24} \qquad p_{2\bullet}$$

$$(4) \qquad p_{41} \qquad p_{42} \qquad p_{43} \qquad p_{44} \qquad p_{4\bullet}$$

$$\overrightarrow{\exists} + \qquad p_{\bullet 1} \qquad p_{\bullet 2} \qquad p_{\bullet 3} \qquad p_{\bullet 4} \qquad 1$$

性質 $\delta > 1 \Leftrightarrow P(X \leq i) > P(Y \leq i), (i = 1, ..., r - 1)$

比率パラメータの一致モデル Tomizawa (1984)

$$\delta^* = \gamma^*$$

ただし

$$\mathcal{S}^* = \frac{\sum_{i=1}^{r-1} G_{i,i+1}}{\sum_{i=1}^{r-1} G_{i+1,i}}, \qquad \gamma^* = \frac{\sum_{i < j < k} p_{ij} p_{jk} p_{ki}}{\sum_{i < j < k} p_{ji} p_{kj} p_{ik}}$$

(注)
$$E(Y) - E(X) = \sum_{i=1}^{r-1} G_{i,i+1} - \sum_{i=1}^{r-1} G_{i+1,i}$$

(a) 条件付き対称モデル(CS)の分解定理

拡張準対称モデル(EQS)

拡張周辺同等モデル(EMH)

比率パラメーター致モデル(E)

定理 2. (Tomizawa,1984) J. Japan Statist. Soc.

CSモデル

⇔ EQSモデル ∩ EMHモデル ∩ Eモデル

これは対称モデルの分解(定理1)の拡張

参考: Tomizawa and Tahata (2007),

J. Soc. Francaise Statistique, 148, 3-36

(b) 線形対角パラメータ対称性モデルの分解

線形対角パラメータ対称モデル Agresti (1983)

$$p_{ij} = \Delta^{j-i} p_{ji} (i < j)$$
 $(1) \quad (2) \quad (3) \quad (4)$ 計 特に $\Delta = 1$ のとき 対称モデル
 $(1) \quad p_{11} \quad p_{12} \quad p_{13} \quad p_{14} \quad p_{1\bullet}$
 $(2) \quad p_{21} \quad p_{22} \quad p_{23} \quad p_{24} \quad p_{2\bullet}$
 $(3) \quad p_{31} \quad p_{32} \quad p_{32} \quad p_{34} \quad p_{3\bullet}$
 $(4) \quad p_{41} \quad p_{42} \quad p_{43} \quad p_{44} \quad p_{4\bullet}$
計 $p_{\bullet 1} \quad p_{\bullet 2} \quad p_{\bullet 3} \quad p_{\bullet 4}$ 1 人倍

準対称モデル Caussinus (1965)

$$p_{ij} = \mu \alpha_i \beta_j \gamma_{ij}, \qquad \gamma_{ij} = \gamma_{ji}$$

$$\frac{p_{ij}}{p_{ji}} = \frac{\delta_j}{\delta_i} \quad (i < j)$$

特に $\delta_i = \Delta^i \mathcal{O}$ とき,

線形対角パラメータ対称モデル

$$\frac{p_{ij}}{p_{ji}} = \Delta^{j-i} \quad (i < j) \quad となる$$

対角重み付き周辺同等モデルI Tomizawa (1987)

$$p_{i\bullet}^{-}(\phi) + p_{ii} + p_{i\bullet}^{+} = p_{\bullet i}^{+} + p_{ii} + p_{\bullet i}^{-}(\phi)$$
 ($i=1,...r$)
$$p_{i\bullet}^{-}(\phi) = \sum_{k=1}^{i-1} \phi^{i-k} p_{ik}, \qquad p_{i\bullet}^{+} = \sum_{t=i+1}^{r} p_{it},$$

$$p_{\bullet i}^{-}(\phi) = \sum_{k=i+1}^{r} \phi^{k-i} p_{ki}, \qquad p_{\bullet i}^{+} = \sum_{t=i+1}^{i-1} p_{si}$$

$$p_{\bullet i}^{-}(\phi) = \sum_{k=i+1}^{r} \phi^{k-i} p_{ki}, \qquad p_{\bullet i}^{+} = \sum_{s=1}^{i-1} p_{si}$$

$$p_{11} \qquad p_{12} \qquad p_{13} \qquad p_{14} \qquad p_{1\bullet}^{(\phi)}$$

$$p_{21} \qquad p_{22} \qquad p_{23} \qquad p_{24} \qquad p_{2\bullet}^{(\phi)}$$

$$p_{20} \qquad p_{21} \qquad p_{22} \qquad p_{23} \qquad p_{24} \qquad p_{2\bullet}^{(\phi)}$$

$$p_{20} \qquad p_{31} \qquad p_{32} \qquad p_{33} \qquad p_{34} \qquad p_{3\bullet}^{(\phi)}$$

$$p_{40} \qquad p_{41} \qquad p_{42} \qquad p_{43} \qquad p_{44} \qquad p_{4\bullet}^{(\phi)}$$

$$p_{\bullet 1} \qquad p_{\bullet 1} \qquad p_{\bullet 2} \qquad p_{\bullet 3} \qquad p_{\bullet 4} \qquad p_{\bullet 4}$$

(b) 線形対角パラメータ対称モデル(LDPS) モデルの分解定理

準対称モデル(QS)

対角重み付き周辺同等モデル(WMH-I)

定理 3. (Tomizawa,1987) Commun. Statist., 16, 477-488

LDPSモデル

⇔ QSモデル ∩ WMH-Iモデル

対称モデルの分解(定理1)の拡張

(c) 対称モデルの別な分解

先程述べたCaussinus(1965)の定理は

対称モデル(S)

$$p_{ij} = p_{ji} (i \neq j)$$

準対称モデル(QS)
$$p_{ij} = \mu \alpha_i \beta_j \gamma_{ij}, \quad \gamma_{ij} = \gamma_{ji}$$

周辺同等モデル(MH) $p_{iullet}=p_{ullet i}(i=1,...,r)$

定理 1. (Caussinus, 1965)

Sモデル ⇔ QSモデル ∩ MHモデル

Agresti (2002); Caterorical Data Analysis (Wiley), p.430 の定理は

$$p_{ij} = p_{ji} (i \neq j)$$

線形対角パラメータ対称モデル(LDPS)

$$p_{ij} = \alpha^i \beta^j \gamma_{ij}, \quad \gamma_{ij} = \gamma_{ji} \Leftrightarrow p_{ij} / p_{ji} = \Delta^{j-i} (i < j)$$

周辺同等モデル(MH) $p_{i\bullet}=p_{\bullet i}(i=1,...,r)$

定理 4. (Agresti, 2002, p.430)

Sモデル ⇔ LDPSモデル ∩ MHモデル

しかし不自然な分解(制約数が左右で合わない) MHモデルより弱いモデルで十分

もう一つの分解を考える:

$$p_{ij} = p_{ji} (i \neq j)$$

線形対角パラメータ対称モデル(LDPS)

$$p_{ij} = \alpha^i \beta^j \gamma_{ij}, \quad \gamma_{ij} = \gamma_{ji} \Leftrightarrow p_{ij} / p_{ji} = \Delta^{j-i} (i < j)$$

平均一致モデル(ME)

$$E(X) = E(Y)$$

定理 5.

Yamamoto, Iwashita, Tomizawa (2007); Austrian J. Stat., 36, 291-306 Tahata, Yamamoto, Tomizawa (2008); Austrian J. Stat., 37, 185-194

Sモデル ⇔ LDPSモデル ∩ MEモデル

§ 5. 適合度検定と例

 $r \times r$ 分割表

観測度数
$$\{n_{ij}\}$$
,ただし、 $n=\sum\sum n_{ij}$

$$n_{ij}$$
の期待度数 m_{ij} $m_{ij} = np_{ij}$

尤度比カイ2乗統計量

$$G^2 = 2\sum \sum n_{ij} \log \left(\frac{n_{ij}}{\hat{m}_{ij}}\right)$$

ここに \hat{n}_{ij} はモデルの下での m_{ij} の最尤推定量

検定統計量の直交性(1)

$$p_{ij} = p_{ji} (i \neq j)$$

準対称モデル(QS)

$$p_{ij} = \alpha_i \beta_j \gamma_{ij}, \quad \gamma_{ij} = \gamma_{ji}$$

周辺同等モデル(MH)

$$p_{i\bullet} = p_{\bullet i} (i = 1, ..., r)$$

定理 6. (Tomizawa and Tahata , 2007)

J. Soc. Francaise Statistique

$$G^2(S) \approx G^2(QS) + G^2(MH)$$

検定統計量の直交性(2)

$$p_{ij} = p_{ji} (i \neq j)$$

線形対角パラメータ対称モデル(LDPS)

$$p_{ij} = \alpha^i \beta^j \gamma_{ij}, \quad \gamma_{ij} = \gamma_{ji} \Leftrightarrow p_{ij} / p_{ji} = \Delta^{j-i} (i < j)$$

平均一致モデル(ME)

$$E(X) = E(Y)$$

定理 7. (Tahata, Yamamoto, Tomizawa, 2008)

Austrian J. Statistics

$$G^2(S) \approx G^2(LDPS) + G^2(ME)$$

例

表1. 英国の女性裸眼視力データ (Stuart, 1955)

		左眼			
	良い	やや良い	やや悪い	悪い	計
右眼	(1)	(2)	(3)	(4)	
良い (1)	1520	266	124	66	1976
やや良い (2)	234	1512	432	78	2256
やや悪い (3)	117	362	1772	205	2456
悪い (4)	36	82	179	492	789
計	1907	2222	2507	841	7477

表2. 女性視力データに対する尤度比統計量

モデル	自由度	G^2	
	6	19.25*	
準対称	3	7.25	
周辺同等	3	11.99*	
―― 条件付き対称	5	7.35	7
線形対角パラメータ対称	5	7.28	
拡張線形対角パラメータ対称	4	7.27	
対角パラメータ対称	3	0.50	
○累積対角パラメータ対称	3	0.02	
→ 拡張準対称	2	6.82*	
▶○拡張周辺同等	2	0.005	
対角重み付き周辺同等I	2	0.005	
対角重み付き周辺同等II	2	0.015	
比率パラメータ一致	1	0.11	
平均一致	1	11.98*	

累積対角パラメータ対称モデルの下での解釈

$$G_{ij} = P(X \le i, Y \ge j), G_{ji} = P(X \ge j, Y \le i), (i < j)$$

$$G_{ij} = \Delta_{j-i} G_{ji} (i < j) \qquad G_{12} \qquad G_{24}$$

$$(1) \qquad (2) \qquad (3) \qquad (4) \qquad \overrightarrow{\exists} + \qquad (3) \qquad p_{21} \qquad p_{22} \qquad p_{23} \qquad p_{24} \qquad p_{2\bullet}$$

$$G_{42} \qquad (3) \qquad p_{31} \qquad p_{32} \qquad p_{33} \qquad p_{34} \qquad p_{3\bullet}$$

$$(4) \qquad p_{41} \qquad p_{42} \qquad p_{43} \qquad p_{44} \qquad p_{4\bullet}$$

$$\overrightarrow{\exists} + \qquad p_{\bullet 1} \qquad p_{\bullet 2} \qquad p_{\bullet 3} \qquad p_{\bullet 4} \qquad 1$$

性質 $\Delta_1 > 1 \Leftrightarrow P(X \le i) > P(Y \le i), (i = 1, ..., r - 1)$

累積対角パラメータ対称モデルの下で

最尤推定量

$$\hat{\Delta}_1 = 1.175, \quad \hat{\Delta}_2 = 1.233, \quad \hat{\Delta}_3 = 1.835 \quad (>1)$$

女性の右目がi以下,左目がj(>i)以上である確率は彼女の左目がi以下,右目がj(>i)以上である確率の $\hat{\Delta}_{j-i}$ 倍高い

モデルの下で $\hat{\Delta}_1 > 1$ より女性の右目がi以下の確率は 左目がi以下の確率よりも高い すなわち、女性の右目は左目よりも良い傾向にある

§ 6. 多元分割表における対称モデルと分解

$2元 r \times r$ 分割表

(1) 対称モデル:
$$p_{ij} = p_{ji} (i \neq j)$$

 \Leftrightarrow

$$\log p_{ij} = \lambda + \lambda_{1(i)} + \lambda_{2(j)} + \lambda_{12(ij)},$$
 to to U,

$$\lambda_{1(i)} = \lambda_{2(i)}, \qquad \lambda_{12(ij)} = \lambda_{12(ji)}$$

$2元 r \times r$ 分割表

(2) 準対称モデル:

$$\Leftrightarrow$$

$$\log p_{ij} = \lambda + \lambda_{1(i)} + \lambda_{2(j)} + \lambda_{12(ij)} \quad (\forall i, j),$$

$$\text{7-7-2},$$

$$\lambda_{12(ij)} = \lambda_{12(ji)}$$

$T元 r \times \cdots \times r$ 分割表

(1) 対称(
$$S^T$$
)モデル: $p_i = p_j$ ($\forall i \neq j$),
ただし $i = (i_1, ..., i_T)$; $i_k = 1, ..., r$;
 $j = (j_1, ..., j_T)$ は i の任意の順列

 \Leftrightarrow

$$\log p_i = \lambda(i)$$

ただし、 $\lambda(i) = \lambda(j)$
 $j = (j_1,...,j_T)$ は i の任意の順列

Bishop, Fienberg, Holland (1975); Discrete Multivariate Analysis:
Theory and Practice (The MIT Press), p.299

Bhapkar (1979); Biometrics, 35, 417-426 Bhapkar and Darroch (1990), J. Multi. Anal., 34, 173-184 $T元 r \times \cdots \times r$ 分割表

(2) $1 \le h < T に対して、h次準対称(Q_h^T)モデル:$

$$\log p_i = \lambda + \sum_{k=1}^T \lambda_k(i_k) + \sum_{1 \leq k_1 < k_2 \leq T} \lambda_{k_1 k_2}(i_{k_1}, i_{k_2})$$
 $+ \ldots + \sum_{1 \leq k_1 < \ldots < k_h \leq T} \lambda_{k_1 \ldots k_h}(i_{k_1}, \ldots, i_{k_h}) + \lambda(i)$ ただし, $\lambda(i) = \lambda(j)$ $j = (j_1, \ldots, j_T)$ は $i = (i_1, \ldots, i_T)$ の任意の順列

Bhapkar and Darroch (1990)

- T元 $r \times \cdots \times r$ 分割表
- (3) $1 \le h$ (Tに対して、h次周辺対称(M_h^T)モデル:

$$p_i^s = p_j^s = p_i^t$$

ただし

$$p_i^s = P(X_{s_1} = i_1, ..., X_{s_h} = i_h)$$

 $j = (j_1, ..., j_h)$ は $i = (i_1, ..., i_h)$ の任意の順列
 $\forall s = (s_1, ..., s_h), \quad 1 \le s_1 < ... < s_h \le T$
 $\forall t = (t_1, ..., t_h), \quad 1 \le t_1 < ... < t_h \le T$

Bhapkar and Darroch (1990)

$$S^T$$
 $+ \tilde{\mathcal{T}} \mathcal{N} \Leftrightarrow Q_h^T + \tilde{\mathcal{T}} \mathcal{N} \cap M_h^T + \tilde{\mathcal{T}} \mathcal{N}$

Bhapkar and Darroch (1990)

定理 9.
$$1 \le h < T$$
に対して

$$G^2(S^T) \approx G^2(Q_h^T) + G^2(M_h^T)$$

Tomizawa and Tahata (2007); J. Soc. Francaise Statistique

 $T元 r \times \cdots \times r$ 分割表

$$(1)$$
 対称 (S^T) モデル: $p_i = p_j$ $(\forall i \neq j)$, ただし $i = (i_1, ..., i_T)$; $i_k = 1, ..., r$; $j = (j_1, ..., j_T)$ は i の任意の順列

(4) 多元のLDPSモデル $(LDPS^T)$:

$$p_i = \left(\prod_{s=1}^T \alpha_s^{i_s}\right) \psi_i, \quad \text{tete} \quad \psi_i = \psi_j$$

Yamamoto, Iwashita, and Tomizawa (2007); Tahata, Yamamoto, and Tomizawa (2008); Austrian J. Statisti.

(5) 平均一致 (ME^T) モデル:

$$\mu_1 = \mu_2 = ... = \mu_T$$

定理10.

 S^T モデル \Leftrightarrow LDPS T モデル \cap ME^T モデル

定理11.

$$G^{2}(S^{T}) \approx G^{2}(LDPS^{T}) + G^{2}(ME^{T})$$

Yamamoto, Iwashita, and Tomizawa (2007), Tahata, Yamamoto, and Tomizawa (2008); Austrian J. Statisti.

T元 $r \times \cdots \times r$ 分割表

(6) 多元のELDPSモデル(ELDPS T):

$$p_{i} = \left(\prod_{s=1}^{T} \alpha_{s}^{i_{s}}\right) \left(\prod_{t=1}^{T} \beta_{t}^{i_{t}^{2}}\right) \psi_{i},$$

$$\uparrow \in \uparrow \in \downarrow \quad \psi_{i} = \psi_{j}, \qquad i = (i_{1}, ..., i_{T})$$

(7) 多元の平均と分散一致モデル (MV^T) :

$$\mu_1 = \dots = \mu_T, \qquad \sigma_1^2 = \dots = \sigma_T^2$$

定理 12.

$$S^T$$
 $+$ $\forall \nu \Leftrightarrow \text{ELDPS}^T$ $+$ $\forall \nu \cap MV^T$ $+$ $\forall \nu \in \text{ELDPS}^T$

定理13.

$$G^2(S^T) \approx G^2(ELDPS^T) + G^2(MV^T)$$

$T元r\times\cdots\times r$ 分割表

(8) 多元のGLDPSモデル(GLDPS T):

$$p_{i} = \left(\prod_{s=1}^{T} \alpha_{s}^{i_{s}}\right) \left(\prod_{t=1}^{T} \beta_{t}^{i_{t}^{2}}\right) \left(\prod_{s=1}^{T-1} \prod_{t=s+1}^{T} \gamma_{st}^{i_{s}i_{t}}\right) \psi_{i},$$

$$\uparrow \in \uparrow \in \downarrow \qquad \psi_{i} = \psi_{j}, \qquad i = (i_{1}, ..., i_{T})$$

(9) 多元の平均,分散,相関一致モデル (MVC^T) :

$$\mu_1 = \dots = \mu_T, \qquad \sigma_1^2 = \dots = \sigma_T^2,$$
 $\rho_{12} = \rho_{13} = \dots = \rho_{T-1,T}$

定理 14.

$$S^T$$
 $+ \vec{\tau} \nu \Leftrightarrow GLDPS^T + \vec{\tau} \nu \cap MVC^T + \vec{\tau} \nu$

定理 15.

$$G^{2}(S^{T}) \approx G^{2}(GLDPS^{T}) + G^{2}(MVC^{T})$$

$T元 r \times \cdots \times r$ 分割表

(10) $1 \le h < T$ に対して、h次線形順序準対称(LQ_h^T)モデル:

$$\log p_i = \lambda + \sum_{k=1}^T i_k \lambda_k + \sum_{1 \leq k_1 < k_2 \leq T} i_{k_1} i_{k_2} \lambda_{k_1 k_2}$$
 $+ \ldots + \sum_{1 \leq k_1 < \ldots < k_h \leq T} i_{k_1} i_{k_2} \cdots i_{k_h} \lambda_{k_1 \ldots k_h} + \lambda(i)$ ただし, $\lambda(i) = \lambda(j)$ (h次交互作用項) $j = (j_1, \ldots, j_T)$ は $i = (i_1, \ldots, i_T)$ の任意の順列

Tahata, Yamamoto and Tomizawa (2011); Mathematical Methods of Statistics, 20, 158-164

定理 16.

$$h=1,...,T-1,$$
 S^T モデル \Leftrightarrow LQ_h^T モデル \cap ME_h^T モデル ただし, ME_h^T は h 次モーメントー致モデル

定理 17.

$$h = 1,..., T - 1,$$

 $G^{2}(S^{T}) \approx G^{2}(LQ_{h}^{T}) + G^{2}(ME_{h}^{T})$

Tahata, Yamamoto, and Tomizawa (2011); Mathematical Methods of Statistics

T元 $r \times \cdots \times r$ 分割表

$$\omega_i^{(t)} = P(X_t = i \mid X_t \ge i) \quad i = 1, ..., r-1; t = 1, ..., T$$

(11) generalized marginal

continuation-ratio モデル(GMC^T):

$$h^{-1}(\omega_i^{(k)}) = h^{-1}(\omega_i^{(1)}) + \Delta_k \quad i = 1, ..., r-1; k = 2, ..., T$$

ただし, h は2階微分可能な狭義単調増加関数

$$\lim_{x \to -\infty} h(x) = 0, \lim_{x \to \infty} h(x) = 1$$

Shinoda, Tahata, Yamamoto, and Tomizawa (2021)

Sankhya Ser. B, 83, 304 – 324

特に $\{\Delta_k = 0\}$ のときは周辺同等 (MH^T) モデル

 GMC^T モデル

$$h^{-1}(\omega_i^{(k)}) = h^{-1}(\omega_i^{(1)}) + \Delta_k \quad i = 1, ..., r - 1; k = 2, ..., T$$
 において,たとえば,

- (1) $h^{-1}(x) = \overline{\log(x/(1-x))}$
- (2) $h^{-1}(x) = \log(-\log(1-x))$
- (3) $h^{-1}(x) = \Phi^{-1}(x)$ ($\Phi(x)$ は標準正規分布関数)

Shinoda, Tahata, Yamamoto, and Tomizawa (2021)

Sankhya Ser.B

特に、(1) のときの GMC^T モデルは marginal continuation odds-ratioが一定 であることを示している

(12) 多元の平均一致モデル(ME^T): $\mu_1 = ... = \mu_T$

定理 18.

 $MH^T + \mathcal{F} \mathcal{V} \Leftrightarrow GMC^T + \mathcal{F} \mathcal{V} \cap ME^T + \mathcal{F} \mathcal{V}$

Shinoda, Tahata, Yamamoto, and Tomizawa (2021); Sankhya Ser.B

定理 19:

h次周辺対称モデルの h次モーメント対称モデルと (h-1)次周辺対称モデルへの分解 (h=2,...,T)

Yoshimoto, Tahata, Iki, and Tomizawa (2019); Calcutta Statistical Association Bulletin, 71, 83-98

定理 20:

<u>点対称モデルの h次f**ダイバージェンス型点対**称モデルと h次周辺点対称モデルへの分解 (h=1,...,T-1)</u>

Yoshimoto, Tahata, Saigusa, and Tomizawa (2019); SUT Journal of Mathematics, 55, 109-137

§ 7. 尺度

対称モデル

2種類の尺度 (Tomizawa, 1994) Statistica Sinica, 4, 325-334

Kullback-Leibler information

$$\phi_{S} = \frac{1}{\delta \log 2} \sum_{i \neq j} \sum_{i \neq j} p_{ij} \log \frac{2p_{ij}}{p_{ij} + p_{ji}}$$

Pearson chi-squared-type discrepancy

$$\varphi_{S} = \frac{1}{\delta} \sum_{i < j} \sum_{i < j} (p_{ij} - p_{ji})^{2} / (p_{ij} + p_{ji})$$

ただし、
$$\delta = \sum_{i \neq j} p_{ij} = P(X \neq Y)$$

$$p_{ij} + p_{ji} > 0$$
 $(i \neq j)$ を仮定して
$$\delta = \sum_{i \neq j} p_{ij} = P(X \neq Y)$$

$$p_{ij}^* = \frac{p_{ij}}{\mathcal{S}} = P(X = i, Y = j \mid X \neq Y)$$

$$p_{ij}^{c} = \frac{p_{ij}}{p_{ij} + p_{ji}} = P(X = i, Y = j | (X, Y) = (i, j) \text{ or } (j, i))$$

Power-divergence type 尺度

Tomizawa, Seo and Yamamoto (1998) Journal of Applied Statistics, 25, 387-398

$$\Phi^{(\lambda)} = \frac{\lambda(\lambda+1)}{2^{\lambda}-1} \sum_{i< j} \left(p_{ij}^* + p_{ji}^*\right) I_{ij}^{(\lambda)} \left(\left\{p_{ij}^c, p_{ji}^c\right\}; \left\{\frac{1}{2}, \frac{1}{2}\right\}\right)$$

$$I_{ij}^{(\lambda)} = \frac{1}{\lambda(\lambda+1)} \left[p_{ij}^c \left\{ \left(\frac{p_{ij}^c}{1/2} \right)^{\lambda} - 1 \right\} + \left\{ \left(\frac{p_{ji}^c}{1/2} \right)^{\lambda} - 1 \right\} \right]$$

$$\Phi^{(0)} = \lim_{\lambda \to 0} \Phi^{(\lambda)}$$

特にλ=0, λ=1のとき, Tomizawa (1994)尺度となる

(別表現)

$$\Phi^{(\lambda)} = \sum_{i < j} \left(p_{ij}^* + p_{ji}^* \right) \left[1 - \frac{\lambda 2^{\lambda}}{2^{\lambda} - 1} H_{ij}^{(\lambda)} \left(\left\{ p_{ij}^c, p_{ji}^c \right\} \right) \right]$$

$$H_{ij}^{(\lambda)}(\bullet) = \frac{1}{\lambda} \left[1 - \left(p_{ij}^c \right)^{\lambda+1} - \left(p_{ji}^c \right)^{\lambda+1} \right]$$

$$\Phi^{(0)} = \lim_{\lambda \to 0} \Phi^{(\lambda)}$$

$$H_{ij}^{(0)}(\bullet) = -p_{ij}^c \log p_{ij}^c - p_{ji}^c \log p_{ji}^c$$
(Shannonエントロピー)

(性質) (1)
$$0 \le \Phi^{(\lambda)} \le 1$$

(2)
$$\Phi^{(\lambda)} = 0 \Leftrightarrow p_{ij} = p_{ji} (i \neq j)$$

(3)
$$\Phi^{(\lambda)} = 1 \Leftrightarrow 任意のi, j(\neq i)$$
に対して

$$p_{ij}^c = 1$$
 (このとき $p_{ji}^c = 0$)

or
$$p_{ji}^c = 1$$
 (このとき $p_{ij}^c = 0$)

対称
$$\left\{p_{ij}^c=p_{ij}/\left(p_{ij}+p_{ji}\right)\right\}$$
 最大の非対称

	(1)	(2)	(3)	(4)		(1)	(2)	(3)	(4)
(1)	_	0.5	0.5	0.5	(1)	_	0	1	1
(2)	0.5	_	0.5	0.5	(2)	1	_	0	1
(3)	0.5	0.5	_	0.5	(3)	0	1	_	1
(4)	0.5	0.5	0.5	_	(4)	0	0	0	_

(尺度の推定値と漸近分散)

 $\{n_{ij}\}$; 多項分布に従う観測度数

$$\hat{p}_{ij} = n_{ij} / n, \quad n = \sum \sum n_{ij}$$

$$\sqrt{n} \left(\hat{\Phi}^{(\lambda)} - \Phi^{(\lambda)} \right) \underset{n \to \infty}{\approx} N \left(0, \sigma^2 \left[\Phi^{(\lambda)} \right] \right)$$

$$\sigma^{2} \left[\Phi^{(\lambda)} \right] = \frac{1}{\delta^{2}} \left[\sum \sum_{i \neq j} p_{ij} \left(\Delta_{ij}^{(\lambda)} \right)^{2} - \delta \left(\Phi^{(\lambda)} \right)^{2} \right]$$

$$\Delta_{ij}^{(\lambda)} = \frac{1}{2^{\lambda} - 1} \left[\frac{2p_{ij}}{p_{ij} + p_{ji}} \right]^{\lambda} - 1 + \lambda \cdot \frac{p_{ji}}{p_{ij} + p_{ji}}$$

$$\times \left\{ \left(\frac{2p_{ij}}{p_{ij} + p_{ji}} \right)^{\lambda} - \left(\frac{2p_{ji}}{p_{ij} + p_{ji}} \right)^{\lambda} \right\} \right\},\,$$

$$\Delta_{ij}^{(0)} = \lim_{\lambda \to 0} \Delta_{ij}^{(\lambda)} = \frac{1}{\log 2} \log \frac{2p_{ij}}{p_{ij} + p_{ji}}$$

(推定した尺度と検定統計量との関係)

推定した尺度

$$\widehat{\Phi}^{(\lambda)} = \sum \sum_{i < j} \left(\widehat{p}_{ij}^* + \widehat{p}_{ji}^* \right) \left[1 - \frac{\lambda 2^{\lambda}}{2^{\lambda} - 1} H_{ij}^{(\lambda)} \left(\left\{ \widehat{p}_{ij}^c, \widehat{p}_{ji}^c \right\} \right) \right]$$

$$\uparrow c \uparrow c \downarrow \qquad \widehat{p}_{ij} = n_{ij} / n$$

Power-divergence 検定統計量(対称モデルに対する)

$$W^{(\lambda)} = \frac{2}{\lambda(\lambda+1)} \sum_{i=1}^{r} \sum_{j=1}^{r} n_{ij} \left[\left(\frac{2n_{ij}}{n_{ij} + n_{ji}} \right)^{\lambda} - 1 \right], \quad -\infty < \lambda < \infty$$

$$\widehat{\Phi}^{(\lambda)} = \frac{\lambda(\lambda+1)}{2(2^{\lambda}-1)n^*} W^{(\lambda)}, \quad \lambda > -1 \quad \text{fit} \quad n^* = \sum_{i \neq j} n_{ij}$$

例

Do you think Denmark should join the common Market?

(Andersen 1980, p.328, Discrete Statistical Models with Social Science Applications (North-Holland))

		Poll II	(October 1971)	
Poll I(August 1971)	Yes	No	Undecided	Total
Yes	176	33	40	249
No	21	94	32	147
Undecided	21	33	43	97
Total	218	160	115	493

表2

		Poll III	(December 1973)	
Poll II(October 1971)	Yes	No	Undecided	Total
Yes	167	36	15	218
No	19	131	10	160
Undecided	45	50	20	115
Total	231	217	45	493

表3. 表1と表2に対する尺度の値と信頼区間

(a) 🧸	表1に対して	λ	$\widehat{\Phi}^{(\lambda)}$	標準誤差	95%信頼区間
		-0.4	0.024	0.016	(-0.008, 0.056)
		0	0.035	0.023	(-0.011, 0.081)
		0.6	0.045	0.029	(-0.013, 0.102)
		1	0.048	0.031	(-0.014, 0.109)
		1.4	0.049	0.032	(-0.014, 0.112)
(b)	表2に対して	$\overline{\lambda}$	$\widehat{\Phi}^{(\lambda)}$	標準誤差	95%信頼区間
		-0.4	0.149	0.040	(0.070, 0.228)
		0	0.207	0.053	(0.103, 0.311)
		0.6	0.254	0.062	(0.132, 0.376)
		1	0.268	0.064	(0.142, 0.394)
		1.4	0.273	0.065	(0.145, 0.400)

(その他の対称性の尺度の研究のいくつか)

周辺同等性の尺度

Tomizawa (1995), Journal of the Royal Statistical Society, Ser. D: The Statistician, 44, 425-439

順序カテゴリにおける対称性の尺度

Tomizawa, Miyamoto and Hatanaka (2001), Australian and New Zealand Journal of Statistics, 43, 335-349

対称性の2次元ベクトル尺度

Ando, Tahata and Tomizawa (2017), Satistics in Biopharmaceutical Research, 9, 212-224

対称性と点対称性の2次元ベクトル尺度

Ando, Tahata and Tomizawa (2019), Advances in Data Analysis and Classification, 13, 519-529

対称性の尺度の分解

Shinoda, Yamamoto and Tomizawa (2023), Communications in Statistics-Theory and Methods (published online)

§ 8. 多変量確率密度関数の対称性と分解

定理 22:

T変量の対称確率密度関数のk次準対称確率密度関数と K次周辺対称密度関数への分解 (k=1,...,T-1)

Iki, Tahata, and Tomizawa (2012); SUT Journal of Mathematics, 48, 199-211

点対称確率密度関数の分解は Iki and Tomizawa (2014); Journal of Probability and Statistics, 2014, 1-6

(参考文献)

研究論文は次のところへ掲載してあります. お手数をおかけしますが, ご覧いただければ幸いです.

URL:

https://www.rs.noda.tus.ac.jp/~stomizaw/tomizawa/tom44.html