3 値出力 Δ-Σ 変調器を用いた直交変調型 EPWM 送信機における

D級電力増幅器の特性評価

7313641 染谷 和

1. はじめに

近年,移動通信システムにおいて,大容量化,高速通信化 に伴い電力消費が大きくなっている.送受信機における電力 消費の半分以上が電力増幅器によるものである. そのため, 高電力効率,線形性,低歪特性を持つ電力増幅器が要求され ている. 高効率な電力増幅器として, スイッチング動作を行 う電力増幅器があげられるが、 スイッチング動作を行うため には、入力信号が方形のパルス信号である必要がある. そこ で、入力信号をパルス信号にして処理を行う方式が提案され てきた.そこで、入力信号をパルス信号にして処理を行う方 式として、包絡線パルス幅変調(EPWM) 方式[1]-[8]がある. この方式では、消費電力を抑えることができる.また、電源 電圧の変動がない定電圧であるためドレインバイアスが一定 になり歪の発生を抑えることができる. そのため, 包絡線パ ルス幅変調(EPWM)送信機は、高い電力効率と線形性を備え ている. 特に. 直交変調型 EPWM 送信機[2]-[8]は、パルス幅 変調時に非線形性による量子化雑音の増加が起きない利点を もつ、しかし、直交変調型 EPWM 送信機では電力増幅器の 入力に正負と零の三値の信号を用いる場合,零値が精度よく 出力できないという問題がある.

本研究では, 直交変調型 EPWM を用いて1つのD 級電力 増幅器で出力する構成の送信機に関し, 3値出力ム-Σ変調器 で2値出力する場合と, 3値出力する場合について,出力電 力,電力効率,および誤差ベクトル振幅(EVM)について特性 比較を行う.加えて, D 級電力増幅器の貫通電流を低減する ために入力信号に電圧オフセットを入れた場合と入れない場 合,電力増幅器内蔵フィルタに直列共振器を用いた場合と並 列共振器を用いた場合についても行った.

2. 送信機の構成

2.1. 直交変調型 EPWM 送信機

図1に直交変調型 EPWM 送信機の構成図を示し、その動 作原理を説明する.まず、I,Q チャネルそれぞれを Δ - Σ 変調 器に入力する.出力されたパルス信号に搬送波を掛け合わせ ることで、RF 信号を得る.本構成では、 Δ - Σ 変調をするこ とにより、量子化雑音に対してノイズシェーピング特性を得 る.これによって、後段のフィルタにより量子化雑音を大幅 に除去できる.

直交変調型は、変調処理をすべて正負のデジタル信号で行 うので、環境変化や経年劣化による電力効率の低下を抑制で きるという特徴がある.本研究では、直交変調として正負1ビ ット交互出力変調[5]を用いた.正負1ビット交互出力変調は、 I,Qチャネルの信号を交互に出力し、正負、零の三値を出力す ることによって、パルス幅変調時に非線形による量子化雑音 の増加が起きないという利点がある[5].

3. シミュレーションによる評価

3.1. シミュレーション方法

本研究におけるシミュレーション構成を図4に示す.まず, Mathworks社MATLABのSimulinkツールを用いて,I,Qチ ャネルのベースバンド(BB)信号にルートロールオフフィルタ により帯域制限をかける.その後,包絡線パルス幅変調によ り電力増幅器(PA)に入力する前のバースト状の方形波からな る RF 信号を生成する[7].次に,Agilent 社の Advanced Design System (ADS) を用いて、生成した信号を D 級電力 増幅器で増幅し PA 内に内蔵する BPF または BRF に通過さ せることで高調波成分または 3 次、5 次の成分を抑える. その 後、再び Mathworks 社 MATLAB の simulink ツールを用い て直交検波し、ルートロールオフフィルタによってダウンサ ンプリングすることにより、I,Q チャネルのベースバンド信号 に復調する.

本評価では, RF の搬送波周波数を 100 MHz ~ 2.0 GHz の 範囲で変化させ, それに応じて, BB 信号シンボルレート, サ ンプリング周波数, タイムステップ, 共振器のパラメータを 変化させている. その後, ADS 上で電力増幅器の出力電力, ド レイン効率, PAE を算出する. また, 直交検波後に MATLAB 上で信号配置点(コンスタレーション)と EVM を算出する.

続いて、ADS と MATLAB/Simulink 上でのシミュレーション
 ン諸元を表 1 および表 2 に示す.シミュレーションに用いた
 回路構成は、直列共振回路を用いる D 級電力増幅器が図 2(a)、
 並列共振回路を用いる D 級電力増幅器が図 2(b)である.

(b)
 図 2. D 級電力増幅器の構成
 (a)直列共振(b)並列共振

図 4.シミュレーション構成

表 1.ADS シミュレーシ	Έ	ン	′諸元
----------------	---	---	-----

シミコ	$1/(100 f_c)$			
pMOS トランジスタ		ゲート長	0.18 µm	
		ゲート幅	26×35 μm	
nMOS トランジスタ		ゲート長	0.18 μm	
		ゲート幅	10×35 μm	
			50 Ω	
	電源電圧 (2V _{DD})		1.8 V	
	入力電圧(オフセットなし)V _{in1} ,V _{in2}		0~1.8 V	
D級	入力電圧(オフセットあり) Vin1		0.7~2.5 V	
電力増幅器	入力電圧(オフセットあり) V _{in2}		-0.7~1.1 V	
(直列共振)	BPF	中心周波数	f_c	
		帯域幅	0.5 <i>f</i> c	
		Q值	2	
	電源電	圧(V _{DD})	0.9 V	
D級	入力電圧(オフセットなし)V _{in1} ,V _{in2}		-0.9 ~ 0.9 V	
	入力電圧Vin1(オフセットあり)		-0.2~1.6 V	
電力増幅器	入力電圧Vin2(オフセットあり)		-1.6 ~ 0.2 V	
(並列共振)	BRF	中心周波数	$3f_c, 5f_c$	
		帯域幅	$1.5f_c, 2.5f_c$	
		Q值	2	

シミュレーションのタイムステップ			
ニンパフタ	ゲート長	0.18 μm	
		26×35 μm	
nMOS トランジスタ		0.18 μm	
		10×35 μm	
負荷抵抗			
電源電圧	王 (2V _{DD})	1.8 V	
入力電圧(オフセットなし)V _{in1} ,V _{in2}		0~1.8 V	
入力電圧(オフセットあり) V _{in1}		0.7~2.5 V	
入力電圧(オフセットあり) V _{in2}		-0.7 ~ 1.1 V	
BPF	中心周波数	f_c	
	帯域幅	0.5 <i>f</i> c	
	Q值	2	
電源電	0.9 V		
入力電圧(オフセットなし)V _{in1} ,V _{in2}		-0.9 ~ 0.9 V	
入力電圧Vin1(オフセットあり)		-0.2~1.6 V	
入力電圧Vin2(オフセットあり)		-1.6~0.2 V	
刘共振) BRF	中心周波数	$3f_c, 5f_c$	
	帯域幅	$1.5f_c, 2.5f_c$	
	Q值	2	
	レーションのタイム -ランジスタ -ランジスタ 負荷抵抗 電源電圧 入力電圧(オフセ 入力電圧(オフ 及力電圧(オフ BPF 電源電 入力電圧(オフセ 入力電圧(オフセ 入力電圧Vin2(入力電圧Vin2(レーションのタイムステップ ・ランジスタ ・ランジスタ クゲート属 ゲート属 ゲート属 ゲート属 ゲート属 ゲート属 グゲート なりでしい レビットなし)Vin1,Vin2 入力電圧(オフセットあり)Vin1 入力電圧(オフセットあり)Vin1 入力電圧(オフセットあり)Vin2 中心周波数 BPF 電源電圧(Vpp) 入力電圧(オフセットなし)Vin1,Vin2 へ力電圧(オフセットなし)Vin1,Vin2 入力電圧(オフセットなし)Vin1,Vin2 入力電圧(オフセットなし)Vin1,Vin2 入力電圧(オフセットなし)Vin1,Vin2 入力電圧(オフセットなし)Vin1,Vin2 入力電圧(オフセットなり) 入力電圧Vin2(オフセットあり) 入力電圧Vin2(オフセットあり) へ力電圧Vin2(オフセットあり) 中心周波数 BRF 帯域幅 Q値	

表2. MATLAB シミュレーション諸元

3.2. 評価方法

(a) 効率の指標

パワーアンプの効率を表す指標としてドレイン効率 η と PAEの2つがある.ドレイン効率は式(1)のように、出力電力 (P_{out})を供給電源の電力(P_{dc})で割ったものである.一方、PAE は式(2)に示すように、 P_{out} と入力電力(P_{in})の差を P_{dc} で割った ものである.

$$\eta_D(\%) = \frac{P_{out}}{P_{dc}} \times 100 \tag{1}$$

$$\eta_{add}(\%) = \frac{P_{out} - P_{in}}{P_{dc}} \times 100$$
 (2)

(b) 変調精度の指標

シミュレーションにおける歪みの評価方法として, EVM を 用いて評価を行った. EVM とは,図5のように所望信号に対 する. 誤差ベクトルの割合を示す. 誤差ベクトルの大きさを 測定することにより,変調精度を定量的に測定することが可 能である.

また, EVM の値は式(3)で表される. *sideal*および *smeas*は,信 号を識別するタイミングにおける実際の送信信 号ベクトル,および理想的な変調波ベクトルをそれぞれ示 す.式(3)を用いた結果をデシベル表示に変換したものを本検 討における EVM とする.

図 5. EVM の概念図

3.3. シミュレーション結果

3.3.1. PA 内蔵フィルタ形式, PA 入力信号形式, PA 入力信号バイアス・オフセットの電力効率, 出力電力, EVM への影響評価

D 級 PA 内蔵フィルタとして直列共振回路および並列共振 回路を用いた場合, PA 入力の EPWM 出力信号形式として 3 値および 2 値を用いた場合,および電力増幅器入力バイアス にオフセットを入れない場合と入れた場合について,ドレイ ン効率, PAE,出力電力の比較,および雑音を含む信号に対 する EVM の比較を行った.

(a) 電力効率

図 6, 図 7 に、ドレイン効率, PAE のシミュレーション結果 を示す. ドレイン効率と PAE は、搬送波周波数の増加と共に 減少する. 原因としては、周波数の増加に伴いトランジスタ の動作の速度が追い付かなくなることが考えられる. また、 全体的に効率が下がる理由としては 3.3.2 に述べるように、 入力する 16QAM 信号の PAPR が大きいため、およびバック オフを設けているため、平均電力が小さくなり、相対的に量 子化雑音電力による電力損が大きくなっていると考えられる.

入力信号にオフセットを入れている場合は入れていない場 合に比べて貫通電流を抑えることが出来ているため,効率が 改善されていることがわかる.また,直列共振の PAE におい て,高周波数領域でオフセットなしの場合の方がオフセット を入れている場合に比べて効率が良い理由としては,オフセットを入れた場合,トランジスタのドレイン電流が絞られてしまうため,利得が下がり,入力の消費電力のよる PAE の低下が大きくなることが考えられる.

(b) 出力信号電力

図8に,信号電力のシミュレーション結果を示す.信号電力 は、オフセットを入れた場合に比べて、入れない場合の方が 大きいことがわかる.これは、オフセットを入れることによ りトランジスタのドレイン電流が絞られてしまうことによる と考えられる.

(c) EVM

図9に, EVM のシミュレーション結果を示す.全体的に 搬送波周波数増加と共にEVM が減少していることがわかる. この原因としては,搬送波周波数増加と共にPMOS型および NMOS型トランジスタの動作速度が不十分となり,波形への 追随性が低下し,結果として EVM が減少していることが考 えられる.

(d) 評価結果の判定

各条件における評価判定結果を表3に示す.この結果より, 効率を重視した場合は3値の入力信号にオフセットを入れた 並列共振回路を用いたD級電力増幅器,EVMを重視した場 合は2値の入力信号にオフセットを入れないで入力する直列 共振回路を用いたD級電力増幅器が適しているといえる.

3.3.2. 連続方形波入力時と変量信号入力時の電力 効率,出力電力の比較

3.3.1節において, EVM と電力効率についてそれぞれ良好 と反省された,直列共振回路を用い,2値信号を入力,オフ セットをいれない場合,および並列共振回路を用い,3値信 号を入力,オフセットを入れた場合のそれぞれについて,連 続方形波と EPWM 変調信号を入力した時のドレイン効率, PAE, EVM の評価結果を,それぞれ,図10から図12に示 す.連続方形波に対して,変調信号を用いた場合大きく効率 が低下しているのがわかる.この原因は,入力している 16QAM の信号の PAPR が高く,さらにバックオフをもうけ ているためである.また,高い周波数において方形波に対し て変調信号を用いた場合,効率の低下がより大きい原因とし ては、変調信号の場合、連続方形波より高い周波成分が多い ことが考えられる.

図 8.信号電力

図 9. EVM

		オフセットなし			
		η _D	PAE	EVM	総合判定
3値	直列共振	Δ	\triangle	0	Δ
	並列共振	×	×	×	×
。店	直列共振	0	0	0	O
210	並列共振	×	×	×	×
		オフセットあり			
			オフ	セットむ	あり
		η _D	オフ PAE	セットむ EVM	<u>あり</u> 総合判定
2位	直列共振	η _D Ο	オフ PAE ム	セットa EVM O	あり 総合判定 △
3値	<u>直列共振</u> 並列共振	n 0©	オフ PAE	セットa EVM O O	5り 総合判定 △ ◎
3値	直列共振 並列共振 直列共振	η _□ Ο ◎ Ο		EVM O O	50 総合判定 <u>○</u> ○

図 10.ドレイン効率(signal + noise)

図 12.出力電力

4. まとめ

本研究では, 直交変調型 EPWM を用いて1つの電力増幅 器で出力する構成の送信機に関し, 下記の3項目について特 性比較を行った.

(i)3 値 Δ-Σ 変調器で3 値出力する場合と2 値出力する場合
 (ii)D 級電力増幅器の貫通電流を低減するために、入力信号
 に電圧オフセットを入れた場合と入れない場合

(iii)電力増幅器内蔵フィルタに直列共振器を用いた場合と 並列共振器を用いた場合

その結果,効率を重視した場合は、3 値の入力信号にオフ セットを入れ、並列共振回路を用いた D 級電力増幅器, EVM を重視した場合は、2 値の入力信号にオフセットを入れず, 直列共振回路を用いた D 級電力増幅器が適していることがわ かった.

文 献

- Y. Wang, "An improved Kahn Transmitter Architecture Based on Delta-Sigma Modulation," 2003 IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp.1327-1330, June 2003.
- [2] Y. Wang, "A class-s RF amplifier architecture with envelope deltasigma modulation," IEEE Radio & Wireless Conference, RAWCON2002, pp. 177-179, 2002.
- [3] Helaoui, M., Hatami, S., Negra, R., Ghannouchi, F.M., "A Novel Architecture of Delta-Sigma Modulator Enabling All-Digital Multiband Multistandard RF Transmitters Design", IEEE Trans. CAS II: Express Briefs, pp. 1129 – 1133, vol. 55, no.11, Nov. 2008.
- [4] M. L. S. Penaloza, G. Baudoin, M.Villegas, "A Cartesian Sigma-Delta Transmitter Architecture", IEEE Radio and Wireless Symp., pp. 51-54, 2009.
- [5] H. Izumi, M. Kojima, Y. Umeda and O. Takyu "Comparison between quadrature- and polar-modulation switching-mode transmitter with pulse-density modulation," International Conference on Advanced Communication Technology (ICACT), pp. 1140 - 1145, Jan2013.
- [6] R. Hezar, L. Ding, J. Hur and B. Haroun, "A 23dBm fully digital transmitter using ΣΔ and pulse-width modulation for LTE and WLAN applications in 45nm CMOS," 2014 IEEE RFIC Symp., pp. 217-220, June 2014.
- [7] T. Noda, W. Someya, Y. Iikura, Y. Umeda, and Y. Kozawa, "Bi-level Quadrature-modulation Low-pass EPWM transmitter Using Half Side of Tri-level $\Delta\Sigma$ Modulator," to be submitted to PAWR 2015.
- [8] 染谷 和, 楳田 洋太郎, 小澤 佑介," 直交変調型 EPWM 送 信機における CMOS 型 D 級電力増幅器を用いた変調精度の改 善, "2014 信学技報, vol.113,no.460,pp.145-150,Mar.2014.

本研究に対する学会発表など

(A) 査読付き論文

なし

(B) 査読付き小論文

T. Noda, <u>W. Someya</u>, Y. Iikura, Y. Umeda, Y. Kozawa, "Bi-level Quadrature-modulation Low-pass EPWM transmitter Using Half Side of Tri-level $\Delta\Sigma$ Modulator," RWW, TU3P-5, Jan. 2015.

(C) 査読なし論文

<u>染谷和</u>, 楳田洋太郎, 小澤佑介, "直交変調型 EPWM 送信機における CMOS 型D級電力増幅器を用いた変 調精度の改善, "2014 信学技報, vol.113, no.460, pp.145-150, Mar.2014.

染谷 和,野田 昂志,楳田 洋太郎,小澤 佑介,"
3 値出力 Δ-Σ 変調器を用いた直交変調型 EPWM 送
信機における D 級電力増幅器の 2 値および 3 値駆動
の比較"2015 信学技報,vo.114, no.391, pp99-104,
Jan.2015

野田昂志, <u>染谷 和</u>, 飯倉祥晴, 楳田洋太郎, 小澤 佑介"3値 $\Delta \Sigma$ 変調器により生成した2値包絡線パル ス幅変調信号を用いる直交変調型送信機"2014 信学 技報, vo.114, no.318, pp83-88, Nov.2014

(D) 学生大会等の口頭発表

なし

(E) 特許

棋田 洋太郎,野田 昂志, <u>染谷 和</u>, 飯倉 祥晴,
特願 2014-204904 2014/10/3
信号処理装置及び送信装置.