中継用共振器を用いた磁気結合共振器型無線電力伝送における 電力効率の距離依存性

7311647 関口直哉

1. はじめに

近年, ユビキタス社会の実現に向けて, センサーネットワ ークなどの場面で、伝送距離に対して電力伝送効率の良いワ イヤレス電力伝送が必要とされている. ワイヤレス電力伝送 の方式は大きく3つに分けられ、電磁誘導型、電波型、磁気 結合共振型となる. 電力伝送効率は伝送距離に依存し、現在 は所望の伝送距離に応じて、近距離では、非常に高い効率で 伝送可能な電磁誘導型,中長距離では,効率は低下するが, 長い距離での伝送が可能な電波方式と使い分けがされてい る. そんな中, 2007 年にマサチューセッツ工科大学の研究 グループが発表した 2m離れた場所に置かれた 60Wの電球 を点灯させた磁気結合共振型の電力伝送方法は、伝送距離に 対し高い電力伝送効率で伝送可能な新しい方法として大き な注目を集めている[1]. 磁気結合共振型には、電力を直接共 振器に供給する直結型と, 中継用共振器を用いた中継型があ り、マサチューセッツ工科大学の発表は中継型にあたる.磁 気結合共振型の電力伝送方法の研究は活発に行われており [1]-[3], 直結型の伝送距離と電力効率の関係は、等価回路を 電気回路の分野で解析した非常に明確な理論が確立されて いる[2]. 中継型も, 理論解析が行われているが, その方法は 結合モード理論に基づくもの[1]や,フィルタ理論を基づくも の[3]など、直結型に比べ非常に難解で理解することが難しい. そこで、本研究では、中継型の伝送距離と伝送効率の関係を、 回路の二端子対行列より理論式として導出した.また,理論 式,回路シミュレーション、伝送実験の3つの方法を対比す ることにより,理論式の妥当性を確かめ,中継用共振器を用 いた磁気結合共振器型電力伝送の伝送距離と効率の関係を 明らかにした.

2. 磁気結合共振電力伝送

2.1 概要

磁気結合共振とは、インダクタンスとコンデンサで作られ た2つの共振器が共振状態において磁界で結合し、電力をワ イヤレスで電力を伝送する現象のことをいう. 共振の現象 を利用するため, 受信側と送信側それぞれの共振器の共振 周波数を合せることが条件となる.

2.2 アンテナモデル

中継用共振器を用いた磁気結合共振器型電力伝送の概 要を図1に示す. 左側が送信側,右側が受信側である. 送 信側、受信側ともに1巻のループアンテナと共振用のアン テナで構成され,送信側の1巻アンテナには電源が、受信 側の1巻アンテナには負荷が接続されている. 共振用アン テナには所望の周波数で共振を起こすためのコンデンサ が直列に接続されている. この時,送信用と受信用の共振 用アンテナの間で磁気結合共振による電力伝送が行われ ており,送受信側ともに,1巻アンテナと共振用アンテナ の間は電磁誘導により電力伝送が行われている.

3. 理論計算

3.1 等価回路

伝送距離と効率の理論計算を行うにあたり,図1のアン テナモデルの等価回路を考える.アンテナは共振している ので,LC 共振と表わすことができる.また,アンテナ同 士の結合は相互インダクタンスを用いて表わすことがで きるので,図1のアンテナモデルの等価回路は図2によう

磁気結合共振型電力伝送の等価回路

ここで、 L_1 , L_2 , L_3 , L_4 は、それぞれのアンテナの自己イン ダクタンス、 C_2 , C_3 は共振用アンテナに直列に接続されたキ ャパシタンスである. Z_0 は特性インピーダンスである. L_{m12} , L_{m23} , L_{m34} はそれぞれアンテナ同士の結合を示す相互インダ クタンスである. また、 C_{i2} , C_{i3} は共振用アンテナが持つ線間 容量であり、 R_1 , R_2 , R_3 , R_4 はアンテナの内部抵抗である. 相 互インダクタンス,線間容量、内部抵抗については詳しい内 容を後述する.

3.2 等価回路の変形・分解

図2の回路で相互誘導回路における変換[3]を考える.相互 誘導回路はT型回路と等しい事は良く知られており,図2の 回路は図3の回路のように変換することができる.アンテナ の線間容量は,共振用に接続されたキャパシタンスと合成す ることができる.さらに,二端子対回路として簡単に計算す るために,変換した回路を図4のように3つに分解する.

3.3 行列の変形

図4より、3つに分解した回路のZパラメータを[Z1], [Z2], [Z3]を(1)式に示す.

$$\begin{bmatrix} Z1 \end{bmatrix} = \begin{bmatrix} j\omega L_1 + R_1 & j\omega L_{m12} \\ j\omega L_{m12} & 0 \end{bmatrix}$$
$$\begin{bmatrix} Z2 \end{bmatrix} = \begin{bmatrix} j\omega L_2 + \frac{1}{j\omega(C_2 + C_{i2})} + R_2 & j\omega L_{m23} \\ j\omega L_{m23} & j\omega L_3 + \frac{1}{j\omega(C_3 + C_{i3})} + R_3 \end{bmatrix}$$
$$\begin{bmatrix} Z3 \end{bmatrix} = \begin{bmatrix} 0 & j\omega L_{m34} \\ j\omega L_{m34} & j\omega L_4 + R_4 \end{bmatrix} \quad \cdots \cdots \cdots (1)$$

3つの回路を縦続接続して計算したいので, F パラメー タに変換[4]する.

回路を縦続接続し、回路全体の F パラメータを行列の 掛け算により求める.また、計算した式が大きくなりすぎ るので、計算後の結果を以下のように置く.

$$\begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} F1 \end{bmatrix} \begin{bmatrix} F2 \end{bmatrix} \begin{bmatrix} F3 \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \quad \cdots \quad \cdots \quad (3)$$

図4 分解した等価回路

(3)式より行列の変換を行い,回路全体のZパラメータを求める.

$$\begin{bmatrix} Z \end{bmatrix} = \frac{1}{C} \begin{bmatrix} A & |F| \\ 1 & D \end{bmatrix} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (4)$$

3.4 Sパラメータから伝送効率の算出

(4)式で求めた回路全体のZパラメータから,特性インピー ダンスを定義して,Sパラメータを求める[5].まず,特性イ ンピーダンスの行列を(5)式に定義する.

$$\begin{bmatrix} Z_0 \end{bmatrix} = \begin{bmatrix} Z_0 & 1 \\ 1 & Z_0 \end{bmatrix} \cdots \cdots \cdots \cdots \cdots (5)$$
(5)式の平方根をとり、逆行列を求める.

$$\left[\sqrt{Z_0}\right]^{-1} = \left[\begin{array}{cc}\sqrt{Z_0} & 1\\ 1 & \sqrt{Z_0}\end{array}\right]^{-1} = \left[\sqrt{Y_0}\right] \cdot \cdot \cdot \cdot (6)$$

(6)式を(4)式の両側からかける.

(7)式を利用して, Sパラメータを求める.

 $[S] = \left\{ \begin{bmatrix} \hat{Z} \end{bmatrix} + \begin{bmatrix} 1 \end{bmatrix} \right\}^{-1} \left\{ \begin{bmatrix} \hat{Z} \end{bmatrix} - \begin{bmatrix} 1 \end{bmatrix} \right\} \cdots \cdots \cdots (8)$ 求めた S パラメータより、効率 η は(9)式で表わされる.

$$\eta = |S21|^2 * 100[\%] \quad \dots \quad \dots \quad \dots \quad \dots \quad (9)$$

3.5 内部抵抗の算出

理論式を実験と対応付けるために、アンテナの内部抵抗の 値を求める. 伝送を行う周波数が 15MHz 付近のため、表皮 効果も考慮する. 表皮の深さ δ は(10)式で表わせる[6].

$$\delta = \sqrt{\frac{2\rho}{\mu\omega}} \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad \cdots \quad (10)$$

ここで μ は透磁率、 ω は角周波数、 ρ は銅の抵抗率である. 抵抗率は、実際に利用したアンテナを実測した抵抗値から算 出した.線の断面の半径をaとすると、 δ がdに対し十分に 小さい時、線を流れる電流の断面積 A は(11)式と近似でき、 内部抵抗の値Rは線の長さIを利用して(12)式と表わせる.

$A = 2\pi a \delta$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (11)
$R = \rho \frac{l}{A}$	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• (1	2)

3.6 線間容量の算出

理論式を実験と対応付けるために、実験で利用した共振 用アンテナの線間容量の値を求める.このアンテナは複数 回の巻数のあるループアンテナなので、線間容量が存在す る.しかし、線間容量の値は実測では直接求めることがで きない.そこで、共振条件を満たすキャパシタンスの理論 値と実験値の差を線間容量の値として利用した.

3.7 相互インダクタンスの算出

相互インダクタンスをノイマンの公式を利用して求める[7].相互インダクタンスは距離に依存する値となるので,理論計算と回路シミュレーションでは,この値を変化させることにより距離に対する依存性を計算した.

$$L_m = N_1 N_2 \frac{\mu}{2} \int_0^{2\pi} \frac{r_1 r_2 \cos\theta d\theta}{\sqrt{r_1^2 + r_2^2 + d^2 - 2r_1 r_2 \cos\theta}} \quad \dots (13)$$

ここで、 $N_1 N_2$ はそれぞれ送受信アンテナの巻数、 $r_1 r_2$ はループアンテナの半径である. 伝送距離は d で表わされ、これはアンテナの中心と中心の距離を示す

4. 評価

本章では,前章で構築した理論式,回路シミュレーター を使ったシミュレーション,伝送実験の3つの方法を利用 し,すべての方法で同じ条件における伝送距離と電力効率 の関係を求めた.また,送受信アンテナが同じ大きさであ る対称形と,受信の半径が送信アンテナの半径に比べ小さ い非対称形の場合の2つのパターンで評価を行った.まず, 実験の概要を示し,その後,3つの方法で距離と効率の関 係を明らかにする.

4.1 実験方法

実験の構成を図5に示す. 左側が送信アンテナ,右側が 受信アンテナである. 測定にはネットワークアナライザを 利用した. ネットワークアナライザのポート1に送信アン テナ,ポート2に受信アンテナをそれぞれ接続し, S21を 測定することにより,効率を算出し,実験による距離と効 率の関係とした.

4.2 実験で利用したアンテナ

実験で利用したアンテナを図6に示す.図6・1はネットワ ークアナライザに直接接続する1巻のループアンテナであ る.図6・2は共振用のアンテナで,アンテナの端と端で可変 コンデンサが接続されている.可変コンデンサの値を調節す ることによって所望周波数での通信を行った.アンテナが対 象形の実験は図5のように,同じものを2組利用した.図6・3 は非対称形の実験で利用したアンテナである.一番左の1ル ープがネットワークアナライザに直接つながる1巻アンテ ナで,その他が共振アンテナとなる.一体型となっているが, 1巻アンテナと共振アンテナは直接つながっていない.

図 6-1 1巻アンテナ

図 6-2 共振用アンテナ

図 6-3 非対称形実験用アンテナ

4.3 評価結果

理論計算と回路シミュレーションで利用する,実験に対応した諸元を表1に示す.内部抵抗,線間容量,相互イン ダクタンスの値は、3章で構築した理論から、実験で測定したデータを使って求めた.アンテナが対称形および非対称形の場合それぞれに対し、3つの方法で求めた伝送距離と効率の関係を図7に示す.

恚	1	諸元
11	T	11日ノレ

				対称	非対称			
		ルーフ [°] 部	巻数:N₁	1	1[巻]			
送信			半径:r ₁	9[9[cm]			
			インダクタンス:1	_1 1.4	1.4[µ H]			
			内部抵抗:F	R ₁ 0.1	0.17[Ω]			
		巻数:N ₂	5	5[巻]				
		半径:r ₂	9[9[cm]				
		土垢实	インダクタンス:し	_2 6.8	6.8[µ H]			
		大派即	キャパシタンス:	C ₂ 20.	4[pF]			
			内部抵抗:F	R ₂ 0.8	0.86[Ω]			
			線間容量C	i2 1.6	[pF]			
			巻数∶N₃	5[巻]	5[巻]			
, ナ 受信			半径:r ₃	9[cm]	3[cm]			
		共振部	インダクタンス:1	_ ₃ 6.8[μ H]	1.7[µ H]			
			キャパシタンス:	C ₃ 20.3[pF]	81[pF]			
		内部抵抗:F	R ₃ 0.86[Ω]	0.29[Ω]				
		線間容量C	_{i3} 1.6[pF]	1[pF]				
		ルーフ [°] 部	巻数:N₄	1[巻]	1[巻]			
			半径 :r ₄	9[cm]	3[cm]			
			インダクタンス:1	_₄ 1.4[µ H	0.35[µ H]			
			内部抵抗:F	R ₄ 0.17[Ω]	0.06[Ω]			
		銅線o	0.5	0.5[mm]				
+	ㅋㅋㅅ	h*hh7	2.1	2.1[µ H]				
相互129 792ス 受信側: 4			受信側:L _{m3}	₃₄ 2.1[µ H]	0.66[µ H]			
		負荷抵抗	50	50[Ω]				
		共振周波	13.5	13.5[MHz]				
		伝送距	0.15	0.15~2[m]				
100								
		1	句	皮線∶理論計算・	シミュレーション			
10								

図7 伝送距離と効率の関係

図より,対称形,非対称形ともに,理論計算がシミュレー ションと一致し,実験ともよく一致していることがわかる. 実験のグラフが理論計算に比べ短いのは,実験で利用するネ ットワークアナライザの測定限界があるためである.この結 果により,3章で構築した距離に対する効率を求める理論計 算は妥当であると考えられる.

5. まとめ

磁気結合共振型無線電力伝送の研究はさまざまなところ で盛んに行われているが、マサチューセッツ工科大学が最初 に発表した中継用共振器を用いた形でのわかりやすい距離 と効率の関係は未だ発表されていない.本研究ではシステム の等価回路から二端子対回路の計算法を用いて伝送距離と 電力伝送効率の関係の理論式を示した.構築した理論式,回 路シミュレーション,および伝送実験の3つの方法により同 条件での伝送距離と電力伝送効率の関係を求め,理論計算と 実測の一致により,この理論式の妥当性も明らかになった.

参考文献

- A. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P. Fisher, and M. solijacic: "Wireless Power via Strongly Coupled Magnetic Resonances", in Science Express, Vol.317. No.5834, pp83-86 (2007-6)
- [2] Takehiro Imura, Yoichi Hori, "Detemination of Limits on Air Gap and Efficiency for Wireless Power Transfer via Magnetic Resonant Coupling by Using Equivalent Circuit", IEEJ Trans. IA, Vol.130, No.10, pp1169-1174, 2010
- [3] Ikuo Awai, "BPF Theory- Based Design Method for Wireless Power Transfer System by Use of Magnetically Coupled Resonators", IEEJ Trans. EIS, Vol.130, No.12, 2010
- [4] 中村福三,千葉明,"電気回路基礎論",朝倉書店,1999.
- [5] 中村将光, "マイクロ波工学・基礎と原理-", 森北出版,1975
- [6] 阿部英太郎, "マイクロ波", 東京大学出版会, 1983

[7] 高橋秀俊,"電磁気学", 裳華房, 1959

本研究に対する学会発表など

- (A) 査読付き論文なし
- (B) 査読付き小論文 なし
- (C) 査読なし論文

なし

(D) 学会大会等の口頭発表・ポスター発表

<u>関口 直哉</u>, 楳田 洋太郎, "UHF パッシブ RFID タ グにおける電磁共鳴を用いた給電方式の研究", The 7th Tokyo Young Researchers Workshop, 発表番号 45 番, 2010 年 11 月 22 日 <u>関口 直哉</u>, 檜山 青吾, 楳田 洋太郎, "中継用

共振器を用いた磁気結合共振器型無線電力伝送にお ける電力効率の距離依存性," 電子情報通信学会総 合大会, Mar. 2013 (発表予定)