### 第6章軸・軸継手

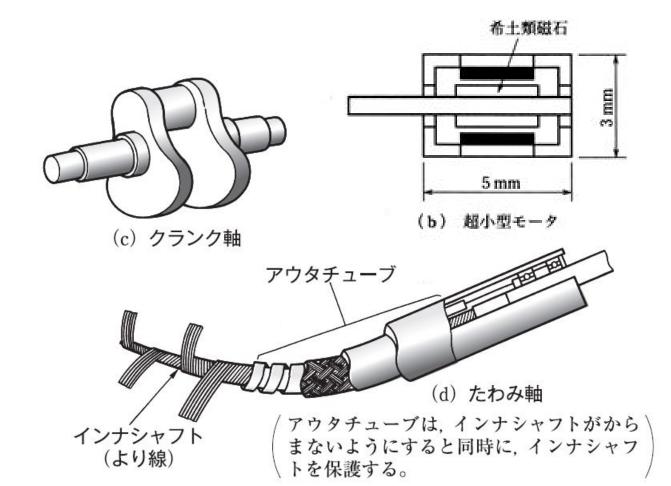
### 6.1 回転軸

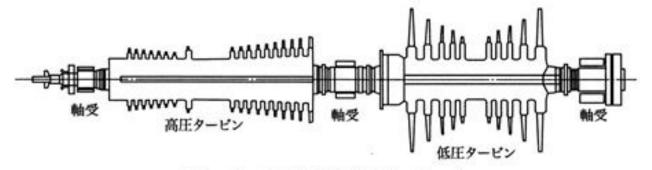
### 回転軸:回転と動力を伝える

### 6.1.1 軸の種類

表 6-1 作用荷重による軸の分類

| 作用荷重                                 | 軸                 | 使 用 目 的                                                              |  |  |
|--------------------------------------|-------------------|----------------------------------------------------------------------|--|--|
| おもに曲げを受ける軸                           | 車軸                | 貨車などの車体を支える軸で、車輪と一体となって回転する軸と、固定軸のまわりに車輪が回転するものとがある(図 6-1(a))。       |  |  |
| おもにねじりを受ける軸                          | <b>3</b><br>伝動軸   | 動力伝達をおもな目的とする回転軸である。                                                 |  |  |
|                                      | 主軸                | 主動力を伝える回転軸。変形が少ない精度の高い回転軸である。                                        |  |  |
|                                      | <b>5</b><br>スピンドル | 高速回転し、回転精度がきわめて高い回転軸である。工作機械では、主軸として用いられることがある。                      |  |  |
| 曲げ・ねじり・引張り・<br>圧縮などを同時に2種類<br>以上受ける軸 | プロペラ軸             | 船舶や航空機, 自動車などで動力を伝える軸である (図 6-1(b))。                                 |  |  |
|                                      | クランク軸             | 内燃機関の往復運動を回転運動にする軸である(図 6-1(c))。                                     |  |  |
|                                      | <b>8</b><br>たわみ軸  | ねじり剛性は高いが、曲げ剛性は低くたわみやすい軸。軸方向自由に変えられるので、小動力の伝達用や計測器などに用いらる(図 6-1(d))。 |  |  |


### 主な軸の種類




(a) 車軸



(b) プロペラ軸





(a) タービン軸(軸受部軸直径:700 mm)

### 5.1.2 軸設計における基本事項

- ·強さ(強度):軸に加わる様々な荷重に対して、十分な 強度を持つ
- ・剛性:荷重によるたわみやねじれなどの変形を押さえる



## 剛性設計

- ・振動:危険速度を高めたり、回避する工夫をする
- ・腐食・摩耗:腐食や摩耗に耐性を持たせる



# 入手性、コスト、加工性等を考慮

### 5.1.3 軸の強さ

軸に作用する荷重の種類 ねじりモーメントだけが作用 曲げモーメントだけが作用 ねじりと曲げが同時に作用 軸力(軸方向荷重)が付加

(1) 曲げだけを受ける軸

円形断面のはりとして扱う 第3章を参照



・中実軸

$$M \le \sigma_a Z = \sigma_a \frac{\pi d^3}{32} \qquad \qquad d \ge \sqrt[3]{$$



$$d \ge \sqrt[3]{\frac{32M}{\pi \, \sigma_a}}$$

### ·中空軸

$$Z = \frac{\pi}{32} \cdot \frac{d_2^4 - d_1^4}{d_2} = k_d$$

$$M \le \sigma_a \frac{\pi}{32} d_2^3 (1 - k_d^4)$$

$$d_2 \ge \sqrt[3]{\frac{32M}{\pi \sigma_a (1 - k_d^4)}}$$

計算されたd、 $d_2$ よりも一回り大きな寸法を表6-2から選ぶ



## (実用的には、軸受がある直径にする)

### 表 6-2 軸の直径 [単位 mm]

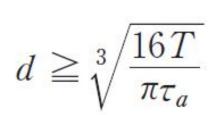
| 4    | 16   | 42  |
|------|------|-----|
| 4.5  | 17   | 45  |
| 5    | 18   | 48  |
| 5.6  | 19   | 50  |
| 6    | 20   | 55  |
| 6.3  | 22   | 56  |
| 7    | 22.4 | 60  |
| 7.1  | 24   | 63  |
| 8    | 25   | 65  |
| 9    | 28   | 70  |
| 10   | 30   | 71  |
| 11   | 31.5 | 75  |
| 11.2 | 32   | 80  |
| 12   | 35   | 85  |
| 12.5 | 35.5 | 90  |
| 14   | 38   | 95  |
| 15   | 40   | 100 |

例題 1

 $M=60~{
m N\cdot m}$  の曲げモーメントを受ける軸の直径 dを求めよ。ただし、許容曲げ応力は  $\sigma_a = 45$  MPa とする。

解答)式(6-1)から,

$$d \ge \sqrt[3]{\frac{32M}{\pi\sigma_a}} = \sqrt[3]{\frac{32 \times 60 \times 10^3}{\pi \times 45}} = 23.9 \text{ [mm]}$$


したがって、表6-2から24mmとする。



### (2) ねじりだけを受ける軸

### ·中実軸

$$T \le \tau_a Z_p = \tau_a \frac{\pi d^3}{16}$$
  $T = \tau_a Z_p, Z_p = \frac{\pi d^3}{16}$ 



### ・中空軸

$$Z_p = \frac{\pi}{16} \cdot \frac{d_2^4 - d_1^4}{d_2} = \frac{\pi}{16} d_2^3 (1 - k_d^4)$$



$$d_2 \ge \sqrt[3]{\frac{16\,T}{\pi \tau_a \, (1 - k_d^4)}}$$

$$\frac{d_1}{d_2} = k_d$$

### ・伝達動力から軸径を求める場合

動力[kW]をn[min-1]で伝達する時のトルクT[N・mm]

$$1000 P = \frac{T}{1000} \cdot \frac{2\pi n}{60} \qquad \qquad T = \frac{30}{\pi} \times 10^6 \frac{P}{n}$$



$$T = \frac{30}{\pi} \times 10^6 \, \frac{P}{n}$$



中実軸:

$$d \ge \sqrt[3]{\frac{16T}{\pi \tau_a}} = \sqrt[3]{\frac{16}{\pi \tau_a}} \times \frac{30}{\pi} \times 10^6 \frac{P}{n} = 100 \sqrt[3]{\frac{480P}{\pi^2 \tau_a n}}$$

中空軸:

$$d_2 \ge \sqrt[3]{\frac{16T}{\pi \tau_a (1 - k_d^4)}} = 100 \sqrt[3]{\frac{480P}{\pi^2 \tau_a n (1 - k_d^4)}}$$

例題 2

 $T=50~{
m N\cdot m}$  のねじりモーメントを受ける軸の直径 d を求めよ。ただし、許容せん断応力  $\tau_a=25~{
m MPa}$  とする。

解答

 $50 \text{ N·m} は 50 \times 10^3 \text{ N·mm} であるので、式 (6-3) から、$ 

$$d \ge \sqrt[3]{\frac{16T}{\pi \tau_a}} = \sqrt[3]{\frac{16 \times 50 \times 10^3}{\pi \times 25}} = 21.7 \text{ [mm]}$$

したがって、表 6-2 から 22 mm を選ぶ。

答 22 mm

例題 4

 $P=3\,\mathrm{kW}$ の動力を $n=1200\,\mathrm{min^{-1}}$ の回転速度で伝達する軸の直径dを求めよ。許容せん断応力 $\tau_a$ は 25 MPa とする。

解答

式 (6-6) から,

$$d \ge 100 \sqrt[3]{\frac{480P}{\pi^2 \tau_a n}} = 100 \sqrt[3]{\frac{480 \times 3}{\pi^2 \times 25 \times 1200}}$$
$$= 16.9 \text{ [mm]}$$

表 6-2 から 17 mm を選ぶ。

(3) 曲げとねじりを受ける軸

軸に曲げモーメントMとねじりモーメントTが同時に加わる



相当ねじりモーメントT<sub>e</sub>と相当曲げモーメントM<sub>e</sub>に換算し、 大きい方の軸径とする



$$T_e = \sqrt{M^2 + T^2}$$

$$M_e = \frac{M + \sqrt{M^2 + T^2}}{2} = \frac{M + T_e}{2}$$

### 相当曲げモーメントからの計算

中実軸:
$$d \ge \sqrt[3]{\frac{32M_e}{\pi\sigma_a}}$$

中空軸:
$$d_2 \ge \sqrt[3]{\frac{32M_e}{\pi\sigma_a (1 - k_d^4)}}$$

### 相当ねじりトルクからの計算

中実軸: $d \ge \sqrt[3]{\frac{16T_e}{\pi \tau_a}}$ 

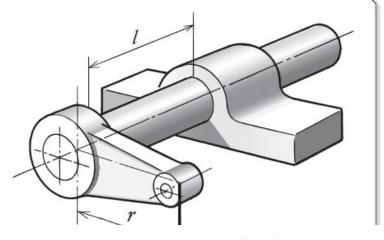
中空軸:
$$d_2 \ge \sqrt[3]{\frac{16T_e}{\pi \tau_a (1 - k_d^4)}}$$

# 比較して 大きい軸径 を選ぶ

### 例題 5

図で W = 400N.

l = 500 mm. r =


300 mm のとき、軸

の直径dを求めよ。

ただし, 許容曲げ応

許容せ

 $\tau_{a} = 25$ 



力  $\sigma_{\sigma_{\ell}}$  (解答) ねじりモーメント T と、曲げモーメント M は、

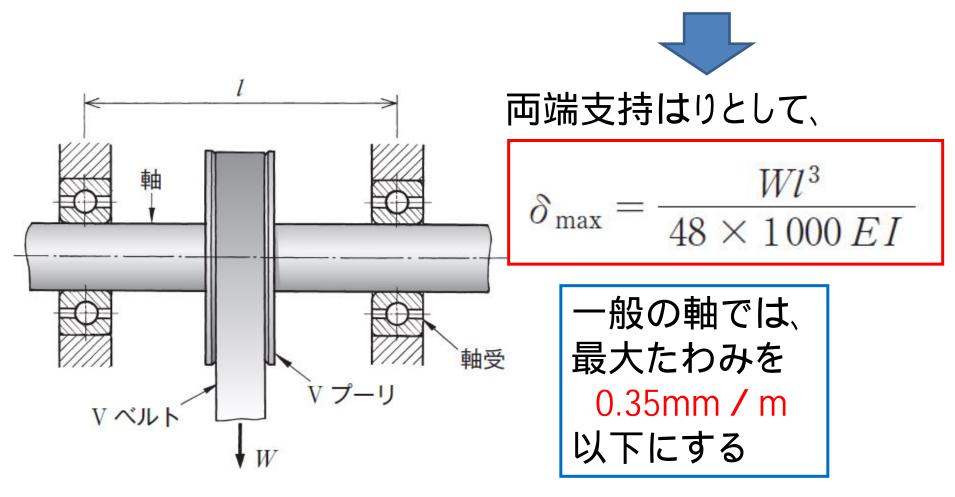
$$T = Wr = 400 \times 300 = 120 \times 10^{3} [N \cdot mm]$$

$$M = Wl = 400 \times 500 = 200 \times 10^{3} [N \cdot mm]$$

相当ねじりモーメント  $T_e$ , 相当曲げモーメント  $M_e$  は式 (6-7) h h.

$$T_e = \sqrt{M^2 + T^2} = \sqrt{200^2 + 120^2} \times 10^3$$
  
= 233.2 × 10<sup>3</sup> [N·mm]  
 $M_e = \frac{M + T_e}{2} = \frac{200 + 233.2}{2} \times 10^3$   
= 216.6 × 10<sup>3</sup> [N·mm]

相当曲げモーメントによる軸の直径は、式(6-8)から、


$$d \ge \sqrt[3]{\frac{32M_e}{\pi\sigma_a}} = \sqrt[3]{\frac{32 \times 216.6 \times 10^3}{\pi \times 50}} = 35.3 \text{ [mm]}$$

### 6.1.4 軸の剛性

剛性:単位荷重当たりの変形量 → 小さく抑える必要がある

### (1) 曲げ剛性

軸の中央に集中荷重Wが作用した時の最大たわみ



### (2) ねじり剛性

長さlの軸にトルクTが作用した場合のねじれθは、

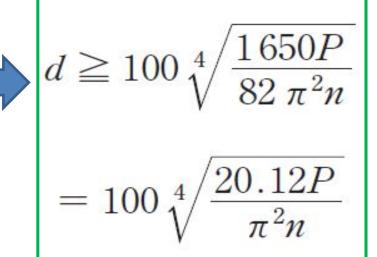
$$\theta = 57.3 \times \frac{Tl}{1000GI_{p}}$$

$$\theta = 57.3 \times \frac{Tl}{1000 G \frac{\pi d^{4}}{32}}$$

$$I_{p} = \frac{\pi d^{4}}{32}$$

ねじれをθ以下にするために必要な軸径は、

$$d \ge \sqrt[4]{57.3 \times \frac{Tl \times 32}{1000 \,\pi^2 \,G\theta}}$$


### 動力P[kW]を伝えるためには、

$$d \ge \sqrt[4]{57.3 \times 32 \times \frac{30}{\pi} \times 10^6 \frac{P}{n} \times \frac{l}{1000 \pi G \theta}}$$
$$= 100 \sqrt[4]{\frac{0.55Pl}{\pi^2 G \theta n}}$$

### 軸のねじれ許容値は、1m当たり1/3°や1/4°

$$d \ge 100 \, {}_{4}\sqrt{\frac{0.55 \times 1000P}{\frac{1}{3} \pi^{2} Gn}}$$
$$= 100 \, {}_{4}\sqrt{\frac{1650P}{\pi^{2} Gn}}$$

材料が鉄鋼ならば、



## 軸径としては、曲げ、ねじりの許容値を満たす 軸径の大きい方を採用する

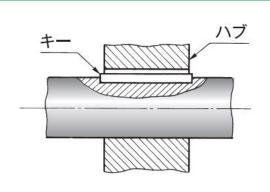
例題 6 P=15 kW の動力を回転速度  $n=280 \text{ min}^{-1}$  で伝え る鋼製の伝動軸の直径 d [mm] を求めよ。ただし、横 弾性係数 G=82 GPa,許容せん断応力  $\tau_a=25$  MPa,

### 解答

)ねじり強さによる軸の直径は、式(6-6)から、

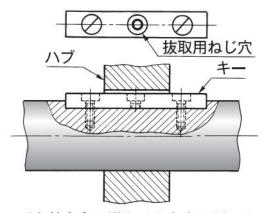
$$d \ge 100 \sqrt[3]{\frac{480P}{\pi^2 \tau_a n}} = 100 \times \sqrt[3]{\frac{480 \times 15}{\pi^2 \times 25 \times 280}} = 47.1 \text{ [mm]}$$

ねじり剛性は、1 m あたりの許容ねじれ角が $\frac{1}{3}$  であるの で、式 (6-13) から、


$$d \ge 100 \sqrt[4]{\frac{20.12P}{\pi^2 n}} = 100 \times \sqrt[4]{\frac{20.12 \times 15}{\pi^2 \times 280}} = 57.5 \text{ [mm]}$$

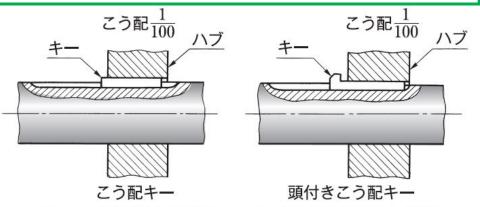
大きいほうの値 57.5 mm をとり、表 6-2 から 60 mm を 選ぶ。

## 6.1.5 軸に回転部品を取り付ける要素


### (1) + -

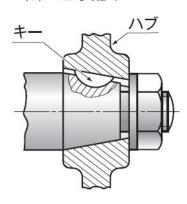
### 軸と歯車、プーリなどヘトルクを伝達する機械要素




軸とハブにキー溝を設け、キーを取りつける。最も広く用いられている。

### (a) ねじ用穴なし平行キー




ハブを軸方向に滑らせるときに用いる。

(c) ねじ用穴付き平行キー



軸のキー溝は軸心に平行, ハブのキー溝をキーのこう配 (1/100) にあわせる。

### (b) こう配キー

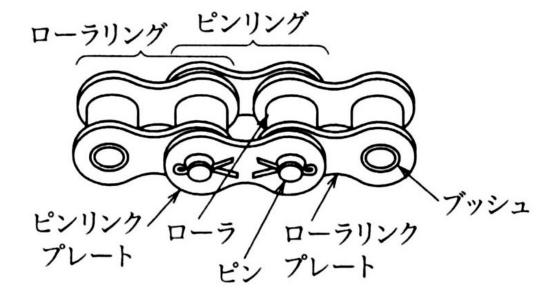


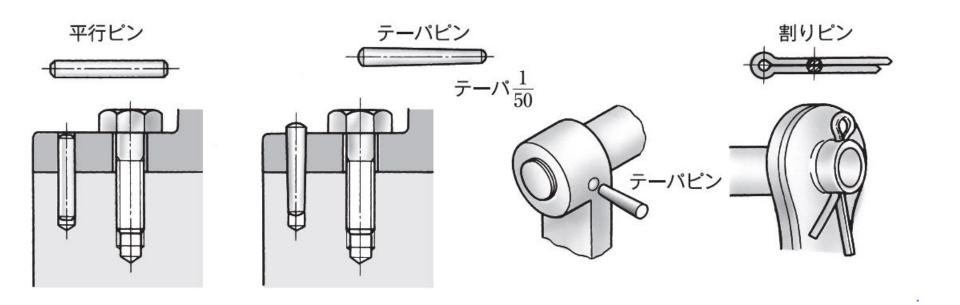
キーの傾きが自動的に調整されるのでハブを押し込みやすい。テーパ軸端に用いられることが多い。

(d) 半月キー

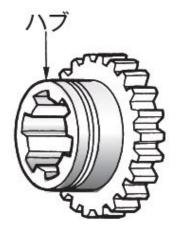
キーは中央部でせん断を受けるので、せん断力で破壊 しない断面積(幅と長さ)を確保して、表6-3から寸法を 選択する。

表 6-3 平行キーの寸法例

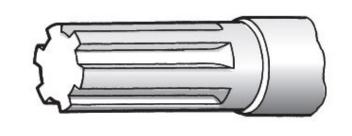

「単位 mm]


| b.///                                   | キーの呼び寸法        | キー溝の基準寸法 |       | (参考) 適用する |
|-----------------------------------------|----------------|----------|-------|-----------|
| 2                                       | $b \times h$   | $t_1$    | $t_2$ | 軸の直径*1    |
| d                                       | $2 \times 2$   | 1.2      | 1.0   | 6~8       |
|                                         | $3 \times 3$   | 1.8      | 1.4   | 8~10      |
| 1////////////////////////////////////// | $4 \times 4$   | 2.5      | 1.8   | 10~12     |
|                                         | $5 \times 5$   | 3.0      | 2.3   | 12~17     |
|                                         | $6 \times 6$   | 3.5      | 2.8   | 17~22     |
|                                         | $8 \times 7$   | 4.0      | 3.3   | 22~30     |
|                                         | $10 \times 8$  | 5.0      | 3.3   | 30~38     |
|                                         | $12 \times 8$  | 5.0      | 3.3   | 38~44     |
|                                         | $14 \times 9$  | 5.5      | 3.8   | 44~50     |
|                                         | $16 \times 10$ | 6.0      | 4.3   | 50~58     |
|                                         | $18 \times 11$ | 7.0      | 4.4   | 58~65     |

## (2) ピン


### ピンの用途

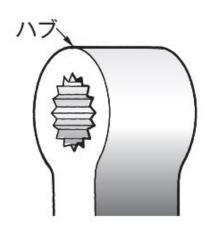
- ・位置決め
- ・部品間のずれ防止

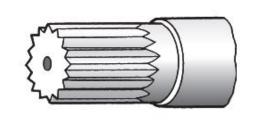





(3) スプライン

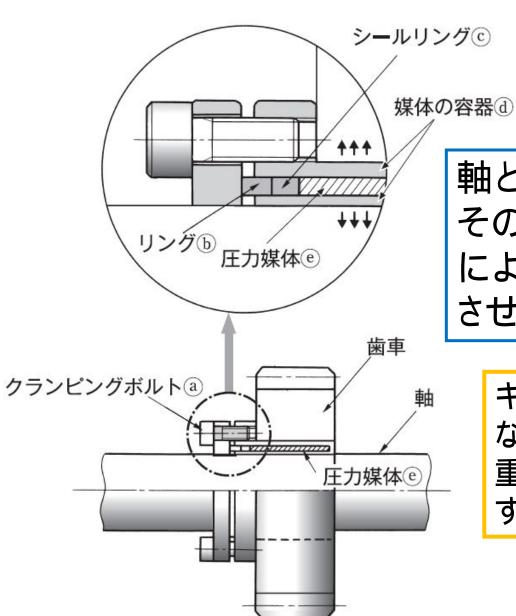



軸とハブに複数の歯と溝を加工し、かみ合いによってトルクを伝達する




満数は、6 or 8

(4) セレーション


スプラインと同じ原理でトルクを伝達 するが、歯が小さく、多い





歯の形は、三角やインボリュート 歯数は、

### (5) フリクションジョイント



軸との間にすきまを設けて、 その部分を膨張させること によって、摩擦力を発生 させて、トルクを伝達する

キー溝などの加工が不要になるが、装置自体が大きく、重く、アンバランスを大きくする

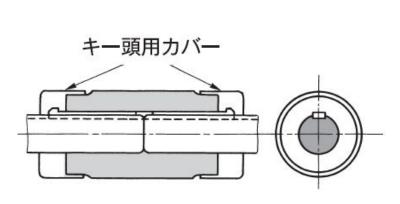
### 6.2 軸継手

駆動源(モータ等)と軸をつなぐ機械要素



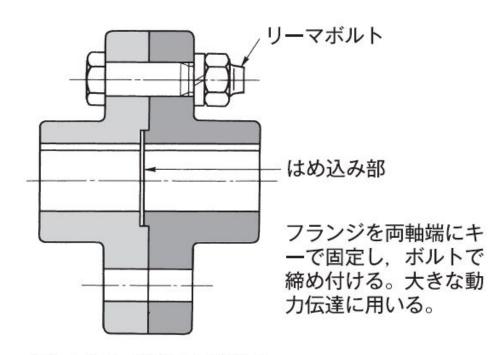
### 回転トルクだけを伝達する

### 6.2.1 軸継手の設計で注意すべき事項


- ① 取りつけ・取りはずしをしやすくする。
- ② できるかぎり小形・軽量にする。
- ③ できるかぎり軸受の近くに設ける。
- ④ 危険防止のため、外部への突起がないようにする。突起があって危険なときはカバーをする。

さらに、2軸の偏心、角度誤差、継手自体の大きさ等

### 6.2.2 おもな軸継手


- (1) 固定軸継手
  - ・2軸の軸線がよく一致していることが必要
  - ・フランジ型の場合は、

フランジ端面の摩擦力 ボルトのせん断抵抗 でトルクを伝達する

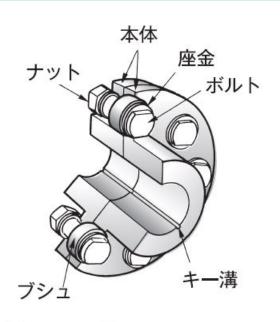


筒に軸を両方からキーで固定する。 細い軸に用いる。

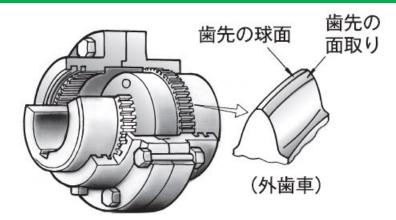
(a) 筒形軸継手



(b) フランジ形固定軸継手


### (2) たわみ軸継手

- ・2軸の軸線を合わせることが難しい場合
- ・振動や衝撃を緩和(伝えたくない)場合

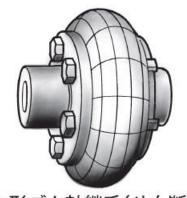

に使用する



## 2軸の軸線誤差は、常に小さくする必要がある (高速回転における振動上昇の原因)



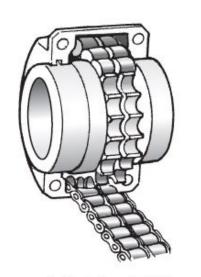
(a) フランジ形たわみ軸継手




ギヤカップリングともいう。外筒の内歯車と 円筒の外歯車がかみあう。外歯車に軸方向の 丸みをつけ、軸が傾いてもよいようになって いる。高速回転、大トルク用。

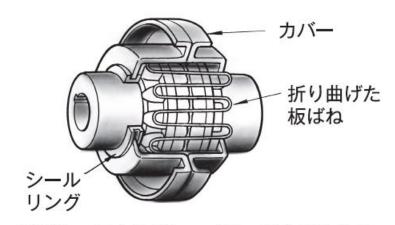
(b) 歯車形軸継手




星形ゴム軸継手 (圧縮形)

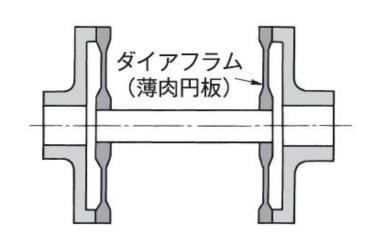


タイヤ形ゴム軸継手(せん断形)


ゴムの弾性効果を利用し、騒音の防止・電気絶縁などの利点がある。耐久性に劣る。

### (c) ゴム軸継手




チェーンとスプロケット との間のすきまによって 両軸心の不一致を吸収す る。

### (e) ローラチェーン軸継手

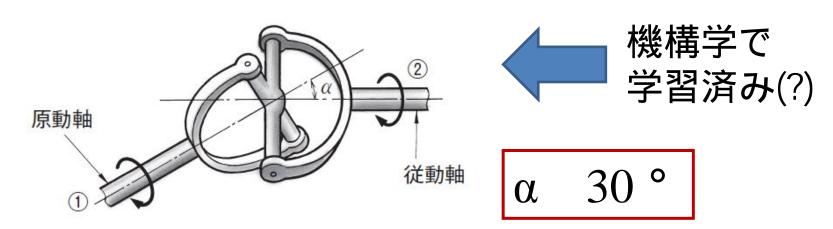


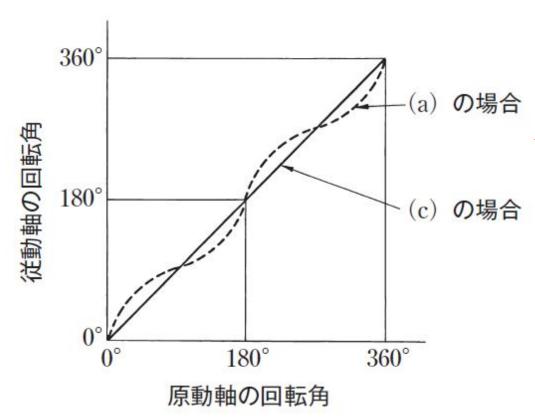
板ばね・コイルばね・ベローズなどをたわ み材として使用する。


### (d) 金属ばね軸継手



(f) ダイアフラム形軸継手

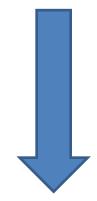

### (3) オルダム継手


2軸の平行心ずれが大きい場合にも適用できる

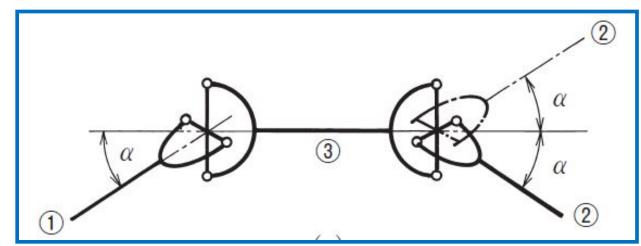


(4) 自在継手(ユニバーサルジョイント)

2軸の角度誤差が大きい場合にも適用できる







しかし、原動軸(入力)の回転 <sub>(a) の場合</sub> と従動軸(出力)の回転には

## 位相差(速度むら)

がある



軸のもう一端に 同じ角度でもう 1つ設置すると 位相差を相殺 できる



# 今週の演習問題

# テキストP144、問題6

ただし、中空軸の <u>外径を40mm</u>に変更