河床洗掘ポテンシャル簡易試験法に基づく リュウキュウアユの産卵場環境評価

EVALUATION FOR SPAWNING SITE OF RYUKYU-AYU USING AN IN-SITU MEASUREMENT METHOD OF RIVERBED-SCOUR POTENTIAL

大槻順朗¹・平野一成²・二瓶泰雄³ Kazuaki OHTSUKI, Kazunari HIRANO and Yasuo NIHEI

¹正会員 博(工) 東京理科大学助教 理工学部土木工学科 (〒278-8510 千葉県野田市山崎2641) ²学生会員 東京工業大学大学院 理工学研究科土木工学専攻 (〒152-8552 東京都目黒区大岡山2-12-1) ³正会員 博(工) 東京理科大学准教授 理工学部土木工学科 (〒278-8510 千葉県野田市山崎2641)

Spawning site conditions of endangered subspecies of Japanese sweetfish named Ryukyu-ayu inhabiting only in the Amami-Oshima Is., Southern Japan were evaluated with an in-situ measurement method of riverbed-scour potential to clarify substratum adhesion of riverbed. In the present method, man-made flow was occurred near river bed and the resultant scour depth was measured. The field survey using the present method was conducted in Yakugachigawa River in Amami-Oshima Is. The result shows that the present method was found to be more suitable for evaluating spawning site condition than a well-known penetrometer. The results also indicate that appropriate parameters for evaluation of spawning site conditions are discussed using scour depth, grain size and flow condition.

Key Words: spawning site, riverbed, scour, penetrometer, Ryukyu-ayu (Plecoglossus altivelis ryukyuensis)

1. はじめに

リュウキュウアユ (Plecoglossus altivelis ryukyuensis) は自然状態では奄美大島のみに生息域が残された絶滅危 惧種である.本種の保全のためには、生活史の出発点と なる産卵場環境の保全は最重要課題の一つである¹⁾. リュウキュウアユは感潮域に近い瀬において産卵を行な うが^{2), 3)}, このとき, 図-1 (a) に示すように, 身体を河 床に擦りつけ洗掘させながら産卵することから、産卵床 としては卵の付着基質となる小礫が動きやすい浮石状態 であることが望ましい³⁾.この際,河床を巻き上げるこ とで、河床内に産み付けられた卵近傍の水通りを良くし 適切に酸素供給させ、かつ、簡単に卵が埋没しないよう にしている4. またアユは流れの乱れによって河床で揺 動する礫を感知した後に、自身の産卵に向けた性成熟の 最終段階に入ることが知られている⁵. しかしながら, 近年では、山林開発や河川改修により過剰に流出した細 粒分(赤土等)による目詰りや造網型水生昆虫による河 床材料の結束に起因して, 産卵場の河床硬化が引き起こ されていることが問題視されている^{1),3)}. 同様の問題は 他のサケ科魚類に関しても報告されている4.

以上の背景から、リュウキュウアユの保全に向けた産 卵場評価においては、いかに河床の硬さを計測するかが キーポイントとなる.これまでの多くの河床硬さ調査に おいては、貫入抵抗器や鉄杭等の器具が河床にどの程度 貫入するのかを計測している⁹.しかしながら、この試 験法は、図-1 (b) に示すように、鉛直下向きのみに力 を加えるため、産卵行動の際に河床に作用する力の作用 方向(水平方向)とは大きく異なり、同試験で計測する 物理特性と実際の産卵行動が対応していない.また、河 床上に作用する水平方向の力に着目している事例として、 造網型水生昆虫による河床固着に関する田代ら⁷⁰の研究 があるが、室内実験のみでの評価であり、現地河川にお いて直接計測する方法が確立されているとは言い難い.

そこで本研究では、河床に付加的なせん断力を与え、 そこで生じる洗掘深を現地で直接計測するという「河床 洗掘ポテンシャル簡易試験法」(以下、洗掘試験法)を 提案する(図-1(c)).ここでは、この洗掘試験法と 貫入試験法の結果を比較するとともに、洗掘試験法等を 用いてリュウキュウアユの産卵場環境を評価することを

(a) 産卵行動の概念図

図-1 産卵行動と各硬さ試験法の概念図

試みる.そのため、奄美大島のリュウキュウアユ最大生 息河川である役勝川において、洗掘試験や貫入試験、水 深・流速観測、河床材料調査、産卵調査などを行った結 果について以下に述べる.

2. 河床洗掘ポテンシャル簡易試験法の提案

(1) 既往の貫入試験法の概要と問題点

これまでアユの産卵場における河床硬さ計測法では、 貫入抵抗器⁸⁾やシノ(針金を結線するための細長く先の 尖った金属製工具)⁹,測量用鉄杭⁰を河床に突き刺し, その深度を計測している. これらの貫入試験法のうち代 表的な土研式貫入試験器((株)関西機器製作所製) を用いた試験手順について一例として記述する. ここで 用いる器具は、鋼製試験棒(長さ2m, 直径2.5cm, 質量 9.9kg,以下試験棒と呼ぶ)とそれに取り付ける打撃用 錘(質量5kg)からなる.まず、試験棒を河床に垂直に 据え、その際には棒を支えるための三脚を用いず、観測 者は力をかけずに支える.次に、この試験棒と錘の自重 による貫入量を測定する. その後, 錘を高さ50cmにわ たり落下させて試験棒に打撃を加え、試験棒を河床に貫 入させる.本来は、10cm貫入するまでの打撃回数を計 測するものであるが、自重のみでも10cmに到達してし まう場合があることを考慮し、本研究では打撃回数を10 回までとし、打撃毎の貫入量を測定している.

このような貫入試験法は簡便であり、試験条件を一定 にできるという長所がある.しかしながら、図-1 (a) に示すように、自らの身体を擦りつけて河床を巻き上げ て行われる産卵行動を考慮すると、鉛直下向きのみに力 を作用させる貫入試験法は、河床に対する力の作用方向 が対応しておらず物理構造が異なるという問題が生じる.

(2) 本洗掘試験法の基本的枠組みと作業手順

前節で述べた貫入試験法の問題点を解消するために, 図-1(c)に示すように産卵行動を模擬し,河床に対し てほぼ平行に付加的な底面せん断力を与えることが可能 な「河床洗掘ポテンシャル試験法」を導入する.これは, ポンプによって河床と平行方向に水流を人為的に発生さ せて、河床を強制的に洗掘し、その時の洗掘深度を計測

する、という方法である.

洗掘試験法における具体的な作業手順を以下に示す。 まず,手動ポンプ(ゴムボート用,容量4L)から伸びる ゴムホース先端の噴出口(内径2cm)を河床と平行に固 定する. その噴出口前面に, 先端にゴルフボール (直径 4cm)を取り付けた鋼製円形棒(直径2.5cm, 質量2.3kg, 以下,洗掘用棒と称す)を河床に垂直に設置する.この 洗掘用棒についても力をかけないように注意しつつ、観 測者が手を添えて支える. ゴムホースからの噴出方向 は、河川流の影響を最小化するために横断方向とな るようにする. なお、別途行った静水下における計測 では、用いたポンプによって発生する噴流の継続時間は 1~2秒間,噴出口から1cm前面における最大流速は約 1.4m/secである. ただし、この継続時間は産卵行動から すると短いものと考えられるが、使用器具の都合上その ままとした. この手動ポンプから空気を圧送してパル ス的に作られる噴流により洗掘用棒周囲の河床を洗 掘する.この洗掘深の測定方法としては、棒に貼り付 けたメジャーで行い、この洗掘量を手動ポンプ圧送5、 10回目に計測する.

このような方法を用いることにより、リュウキュウア ユの産卵行動に近い、底面せん断力による土砂の掃流に 基づいた河床硬さを直接的かつ簡便な方法で現地計測で きるものと期待できる.

3. 現地観測の概要

(1) 観測サイトの概要

観測サイトは、図-2に示すように、鹿児島県・奄美大 島中部の役勝川(流程約15km,流域面積45.1km²)にお けるリュウキュウアユの産卵場を含む約300m,河床勾 配約1/450の区間である.この区間は潮位変化が生じる 上流端に位置する.対象区間の上流側では河川改修によ り平瀬化が見られ(同図(b)),河床勾配は下流部よ りも著しく緩やかであり、水面幅が大きく澪筋は不明瞭 である.同区間下流部の早瀬は、両岸の砂州によって水 面幅が狭まるとともに河床勾配が急になり、明瞭な早瀬

(d)調査位置と水深マップ

図-2 観測サイトについて

が形成されている(同図(c)). なお,この早瀬のさらに下流部では、淵が形成されている.産卵場として確認されているのは平瀬から早瀬への移行帯に位置するL5断面付近であり³,本論文では、L5断面をリュウキュウアユの産卵場と想定して検討を進める.

(2) 調査方法

2011年10月27,28日に物理環境調査として,調査区間 内において,図-2(d)に示すように、6本の横断測線 (L1~L6)を設定し各々に4地点(それぞれ右岸側から L1-1,L1-2,のように名付ける),合計24地点において 洗掘試験や貫入試験,水理・底質調査(水深,流速,河 床高の測量,河床材料の採取・粒径分析)を行った.貫 入試験,洗掘試験の計測地点については河床堆積物があ る部分を水深計測地点から半径1mの範囲で選定した. 流速については電磁流速計(LP-30,(株)ケネック 製)を用いて6割水深の位置で計測し,水深計測には金 尺,河床高の測量にはRTK-GPS(Trimble R4, Trimble 社製)をそれぞれ用いた.底質サンプルについては,河 床から10cm程度までをスコップ等により採取し,ふる い分けによる粒径分析を行った.なお,この観測日は平 水時に相当している.

これに加え、リュウキュウアユの産卵末期にあたる 2012年1月27日に、同区間における産卵確認調査を行っ た.卵の確認は、表層土砂を手で採取し、バット上に広 げて目視確認することで行った.本調査は設定した上記 の6測線のみならず、産卵の可能性がある澪筋を中心に 網羅的に行った.なお、物理環境調査からこの産卵確認 調査の間には、年最大の出水イベント(2011年11月2

日)が生じたが、 澪筋や瀬淵の配置には顕著な変化は確認できなかった.

4. 貫入・洗掘試験結果の比較

本論文で提案する洗掘試験法の特性を把握するために, L3-3地点とL6-3地点における各試行回数に対する洗掘量 と貫入量の推移を図-3(a)に示す.合わせて、全地点 における両試験結果の平均値と中央値を図-3 (b) に示 す. この L3-3地点とL6-3地点の粒径分布(図-4)より, L3-3地点は砂分が、L6-3地点は礫分が各々卓越している. 両結果を比較すると、底質粒径により貫入量や洗掘量が 異なることに加えて、貫入量は洗掘量に比べて1オー ダー程度大きいことが分かる. 貫入試験では、試験棒の 自重のみで80mm程度貫入し、打撃を加えると、さらに 貫入量は増し平均200mm弱となり、400mmを超える地 点も存在する.一方,洗掘量は0~60mmとなり,平均で は17mmである. アユの産卵深さは概ね100mmまでであ り⁶, アユと比較し小型のリュウキュウアユは河床を巻 き上げる能力が低いと考えられ、産卵深さはアユのケー スより浅いと推測される.このような河床のごく表層の 河床硬さを見る上では、既往の貫入試験よりも洗掘試験 の方が適切であると考えられる.

5.洗掘試験法に基づく産卵場環境評価

(1) 土砂・水理特性・洗掘量の空間分布

産卵場環境評価に先立って観測対象サイトにおける基本的な物理特性を把握するために、観測地点における水深平均流速と河床材料の中央粒径d50を図-5(a)、(b)に示す. 図中のコンターは図-2(d)と同じ水深コンターを表示している. ここでは、各物理量を3もしくは4段階に色分けしている. まず、水深コンターより、澪筋は上流側では中央から右岸側に遷移し、やや不明瞭な澪筋と瀬が形成されるが(L1,2)、下流側では澪筋が左右岸に分かれ(L3)、さらに左岸側に寄り(L4)、明瞭な形で形成される(L5,6). これに対応して、流速の大小も変化し、早瀬(L5,6)の流速は70cm/secを越える.河床材料の中央粒径としては、L1~L4断面では澪筋付近では10~30mm、それ以外では10mm以下となるのに対して、早瀬区間では全般に20~30mmと大きい.

調査地点における洗掘量の空間マップを図-5 (c) に 示す.ここでも洗掘量を3段階に色分けする.これより, 洗掘量は、L1~L3、L5では全般に10mm以上となるが,

図-5 各物理量の空間分布(図中①, ②は図-2(d)に対応し, 色コンターは同図の水深マップを示す)

早瀬区間のL6やその上流のL4では10mm以下と小さい.

上記より, 産卵場(L5断面)の物理特性としては, 平 水時水深は15~40cm, 流速は40~70cm/sec. 中央粒径は 11~23mmであり,これらの物理量の範囲は既往の調査 で産卵が確認された範囲(水深20.7~26.5cm, 流速46.3 ~71.0cm/sec, 平均表層礫径14.5mm)と概ね対応してい る³

(2) リュウキュウアユ産卵場の適地評価

a)移動限界粒径の導入

本論文では好適な産卵場と想定したL5断面における物 理量から、産卵場環境に求められる条件を抽出し、観測 サイト全体における産卵場としての利用可能性を評価す る.好適な産卵場環境を定量評価する上で、本研究で提 案している洗掘試験法により洗掘量のみならず、何らか の底質条件の指標が必要となる.そこで、礫床河川にお ける洗掘プロセスに立ち戻ると、礫そのものが移動する 現象に加えて、礫が揺動して間隙中の細粒分が巻き上げ られ、礫の噛み合わせが変化して礫が沈下する現象が考 えられる.これより、間隙中の細粒土砂がその場の流況 により流送されうるかを表現した指標が有効であると考 えられる.

そこで河床に作用する底面せん断力(掃流力)下において、移動可能な粒径範囲の最大値を示す「移動限界粒径 d_c 」を導入することが適切であると考えられる.この移動限界粒径 d_c を算出するには、現況の水深、流速

図-6 洗堀量と d₁₀/d_c の相関図

から算出される摩擦速度 u_* が限界摩擦速度 u_{*c} と等しくなる粒径 d_c を求めればよい.ここでは、岩垣式¹⁰⁾より限界摩擦速度を粒径の関数により与え、計測値から与えられる摩擦速度 u_* を限界摩擦速度 u_*c に見立てて得られる粒径 d_c を求める. u_* の算出に必要なManningの粗度係数については0.03m⁻¹³secと仮定する.

この移動限界粒径 d_c を用いて、土砂の細粒成分がど の程度移動しやすいかを示すには、相対的に細粒分に近 い10%河床粒径 d_{10} と移動限界粒径の比である d_{10}/d_c を見ればよい、すなわち、 $d_{10}/d_c > 1$ のときには、単純 には細粒土砂は掃流されず、 $d_{10}/d_c < 1$ では逆に掃流さ れ易い状況を示しており、 d_{10}/d_c は礫床河川における 細粒分の移動し易さを示す指標と見なせる.

b)産卵場適地の評価と空間分布

産卵場と想定したL5断面における河床の物理特性を抽 出するために,洗掘量と10%河床粒径 d_{10} に対する移動 限界粒径比 d_{10}/d_c ,中央粒径 d_{50} という3つの物理パラ メータに注目して整理した結果を図-6に示す.ここでは, 洗掘量と d_{10}/d_c の散布図を,産卵場(L5断面,図中赤 三角)とそれ以外の地点に分け,後者を産卵場の中央粒 径 d_{50} の範囲内(11~23mm,灰色丸)と範囲外(白 丸)で分けて表示している.この相関図より,洗掘量と d_{10}/d_c には概ね負の相関関係が見られるとともに,① d_{10}/d_c が0.5以上かつ1.0以下,②洗掘量が8mm以上の範 囲で産卵場であるL5断面のデータが集中して分布してい ることが分かる.このように,洗掘量だけの指標で見 ると(洗掘量>8mm) L5断面以外の結果も多数見られ、 同じことは d_{10}/d_c についても言えるため、この二つの 指標(洗掘量と d_{10}/d_c)を導入することで、より明確 にL5断面における物理特性を抽出できていることが分か る.

これら三つの条件を用いて、L5断面以外の産卵場適性 を検討する.まず、三つの条件を満たす地点は存在しな いが、中央粒径 d_{50} の範囲内で、かつ、 d_{10}/d_c と洗掘 量の条件のどちらかを満たす地点を適地とすると、L2-2 地点, L6-3地点, L6-4地点の3地点が抽出される. これ らの平面位置としては、図-7に示すように、L2-2地点 は、河川改修により平瀬化した区間内の澪筋に、L6-3、 L6-4地点は現況産卵場近傍の早瀬区間に位置している. L5断面に近く澪筋の中心部に位置するL6-3, L6-4地点は L5断面と類似した水理・底質環境となりやすいものと考 えられる.一方,平瀬区間のL2-2地点は不明瞭であるが 澪筋に位置しており、実際に、2012年1月における産卵 状況調査においても、同じ平瀬区間の澪筋において産卵 状況が確認された(図-7中の★印).このように、抽 出された3地点は産卵場適地として妥当であるものと判 断される.

c)産卵場評価指標としての洗掘量の優位性

上記では、産卵場適地の評価指標として、洗掘量や d_{10}/d_c , d_{50} の三つの指標を採用している.これらの 物理量が産卵場評価指標として適しているかを客観的に 検証するために、多項ロジスティック回帰モデル¹¹⁾を用 いた産卵場適地モデル化、及びパラメータの数に対する モデルの適合性を示すAIC(赤池情報量基準)を用いた モデルの優劣の分析を行なう.ここでは、応答変数に産 卵場の在/不在(ここでは、L5断面の結果を1、それ以外 を0とする)とし、説明変数に計測した物理量(流速 [cm/sec],水深[mm],中央粒径[mm], d_{10}/d_c)と貫入 量[mm](自重のみ、打撃10回),洗掘量[mm]という7つ の説明変数を設定する.なお、L3-3地点では、流速が0 であり d_{10}/d_c が無限大となるため、本分析から除外す る.7つの説明変数全ての組み合わせ(128通り)のモデ ルに対して、下記の基礎式における係数 β_i を最尤法に

図-7 産卵場適地の平面マップ

			њњ		冰堤	貫入量			
順位	AIC	切片	中犬	d_{10}/d_{c}	沉畑	自重	打撃	水深	流速
			小山门主		里	のみ	10回		
1	10.0	-535	34	-156	16	-	-	-646	-
2	10.0	-364	40	-262	11	-	-	-	-583
3	12.0	-530	26	-61	11	1.5	-	-	-257
4	12.0	-893	42	-79	27	6.4	-3.0	-	-
5	12.0	-135	14	-110	5	-	-	-145	-115
6	12.0	-277	22	-133	10	-	-0.1	-488	-
7	12.0	-288	23	-130	6	-	0.4	-	-380
8	12.0	-1126	53	-109	27	1.3	-	-608	-
9	14.0	-381	17	-38	10	1.4	-0.4	-146	-
10	14.0	-542	27	-61	12	1.7	-0.1	-	-246
20	23.3	-2	-	-	-	-	-	-	-
20位までの採択数			19	18	16	9	9	8	8

表-1 多項ロジスティック回帰分析による産卵場評価モデルの 推定結果

より推定する.

$$p = \frac{\exp(z)}{1 + \exp(z)}, \ z = \beta_0 + \sum_i \beta_i x_i \tag{1}$$

ここで, *p*:産卵場である推定確率, *z*:線形予測子, : 係数, *x_i*:説明変数である.

こうして得られた各モデルに対するAIC及び、AICの 値が小さい(優秀な)モデルから上位10位までの説明変 数に対する係数値と、上位20位までの説明変数ごとのモ デルへの採択数を表-1に示している.この結果から、中 央粒径,洗掘量,貫入量(自重のみ)については,産卵 場としての高適度に対して正、 d_{10}/d_c ,貫入量(打撃) 10回),水深,流速については負の関係性が見て取れる. モデル採択数の観点で見ると、上位20モデルのうち、16 モデルにおいて洗掘量が説明変数として採択されている 一方,貫入量については、自重のみ、打撃10回共に9モ デルしか採択されていない. これより、 リュウキュウア ユの産卵場評価には、洗掘量の方が貫入量よりも有用な パラメータであることが示唆される.また、中央粒径が 19モデル, d₁₀/d_cが18モデルにおいてそれぞれ採択さ れており、洗掘量と合わせたこれら3つのパラメータが 産卵場評価に重要なパラメータとなるものと考えられる.

5. おわりに

本研究では、リュウキュウアユの減少要因の一つと見 られる産卵場河床の固さに着目し、産卵行動による河床 巻上げを模擬した河床洗掘ポテンシャル簡易試験法(洗 掘試験法)を提案した.また、奄美大島役勝川の産卵場 区間における現地調査に基づいて、既往の貫入試験法に 対する本洗掘試験法の有用性および産卵場環境の評価を 行った.主な結論は以下のとおりである.

(1)洗掘試験法では,産卵行動の物理特性に即した試験法となっていることに加え,既往試験による貫入量と

比べて本試験の洗掘量の方がリュウキュウアユの産卵範 囲に近く,これらの観点より洗掘試験法が有用である可 能性が示唆された.

(2) 産卵場評価では、洗掘試験結果により得られる洗 掘量や中央粒径、細粒分の掃流状況を示すパラメータ (10%河床粒径 d_{10} に対する移動限界粒径比 d_{10}/d_c)を 導入した.これらより、産卵場環境においては、 d_{50} が 11~23mm、洗掘量が8mm以上、 d_{10}/d_c が0.5~1.0とな ることを示した.また、これらの指標を用いて、産卵場 適地の判定を行った.

(3) 多項ロジステック回帰モデルによる適地予測モデル構築とAICの比較によるモデル選択結果により,産卵場評価指標として洗掘量や中央粒径, *d*₁₀/*d_c*という三つのパラメータが有用であることを検証した.

謝辞:本研究の遂行にあたり,元鹿児島大学水産学部教 授四宮明彦先生,(財)鹿児島県環境技術協会米沢俊彦 氏にはリュウキュウアユの卵同定をはじめとし現地観測 において多大なご協力を頂いた.ここに謝意を表する.

参考文献

- 四宮明彦: リュウキュウアユ「日本の希少淡水魚の現状と 系統保存—よみがえれ日本産淡水魚—」 (長田芳和, 細谷 和海編), 緑書房, pp.36-47, 1997.
- 2) 岸野底,四宮明彦: 奄美大島役勝川および河内川におけるリュウキュウアユの孵化時期と体サイズ,魚類学雑誌, 第51巻, pp.149-156, 2004.
- 3) 鶴田哲也,阿部信一郎,米沢俊彦,井口恵一朗:奄美大島 産リュウキュウアユの産卵環境,応用生態工学,Vol.12, No.2, pp.109-117, 2009.
- Lisle, E.T.: Sediment transport and resulting deposition in spawning gravels, north coastal California, *Water Resources Research*, Vol.25, No.6, pp.1303-1319, 1989.
- 5) 井口恵一郎、伊藤文成:ネイティブなアユが子孫を残せる 川、「魚から見た水環境 -復元生態学に向けて/河川編」 (森誠一編)、pp.131-144、信山社サイテック、1998.
- 本西晃,花里匡史,青木雄二:多摩川のアユ産卵場の地形 および物理的特徴,海洋と生物,No.197, Vol.33, No.6. pp538-545, 2011.
- 田代喬,渡邉慎多郎,辻本哲郎:造網型トビケラの棲み込みによる河床の固着化,河川技術論文集,第10巻, pp.489-494, 2004.
- 鈴木崇正,角哲也,竹門康弘・中島佳奈:土砂供給に伴う アユ産卵環境の変化予測,京都大学防災研究所年報,第54 号B, pp.711-718, 2011.
- 9) 高橋勇夫,寺門弘悦,村上達朗:島根県西部河川における アユ産卵場造成について,島根県水産技術センター報告書, Vol.2, pp.39-48, 2009.
- 岩垣雄一:限界掃流力に関する基礎的研究(I) 限界掃流 力の流体力学的研究,土木学会論文集,第41巻,pp.1-21, 1958.
- 11) 中村永友: Rで学ぶデータサイエンス, 2 多次元データ解 析法 (金明哲編),共立出版, pp.79-90

(2012.9.30受付)