宮城県名取市沿岸部における津波被害関数の推定と

海岸砂丘の減災効果

Evaluation of Fragility Functions for Tsunami Damage in Coastal District in Natori City, Miyagi Prefecture and Mitigation Effects of Coastal Dune

二瓶泰雄¹·前川俊明²·大嶋李香³·柳沢舞美²

Yasuo NIHEI, Toshiaki MAEKAWA, Rika OHSHIMA and Maimi YANAGISAWA

To clarify the structural damage in Sendai Plain along sandy coasts due to huge tsunami attack on 11 March 2011 and its countermeasure, in the present study, we conducted field survey for structural damage and tsunami height in coastal district of Natori City, Sendai Plain in which an artificial sand dune with the height of about 9 m is located. The measured results indicate that devastated buildings were concentrated in coastal district in which a distance from the shoreline was less than 1 km. The fragility functions for tsunami damage in this site were evaluated using the measured inundation depth. It is also found that the sand dune has an effect on reduction of structural damages due to tsunami inundation.

1. はじめに

2011年3月11日に宮城県牡鹿半島沖を震源地とするマ グニチュード 9.0 の東北地方太平洋沖地震(東日本大震 災)は、日本では観測史上最大、世界でも観測史上4番 目の巨大地震であり、かつ、1000年に一度と言われる規 模の巨大津波が発生した. GPS 波浪計データによると、 岩手県の沖合において 6m を越える津波が観測された(河 合ら、2011). この巨大津波災害の大きな特徴は、明治・ 昭和三陸津波においても被害が大きかった三陸沿岸部の みならず、仙台市より南の平野部においても巨大津波が 襲来したことであり、岩手県、宮城県、福島県北部とい う広範囲にわたり津波浸水高が 20m を越えた (Mori ら, 2012). このような状況下では、岩手県・田老海岸等にお ける巨大なコンクリート製防潮堤の一部が破壊され、そ の背後地も壊滅的被害を受けた (Ogasawara ら, 2012). また、仙台以南の平野部では、津波遡上範囲が海岸より 最大 5km にわたり,かつ,多くの家屋が流出・損壊した (Gokon · Koshimura, 2012).

このようなことから,被災地における復興計画や今後 の津波防災・減災対策を立案する上では,津波外力指標 (浸水深や流速等)と家屋被害状況の関係やそれに対す る家屋構造別の違いを把握する必要がある.また,今次

1	正会員	博 (工)	東京理科大学准教授理工学部土木工学科
2	学生会員		東京理科大学大学院理工学研究科土木工 学専攻修士課程
3			サンスイコンサルタント(㈱ (元東京理科 大学学部生)

巨大津波において甚大な被害が見られた平野部において 一般に存在する砂浜海岸では、リアス式海岸で多く建設 されていたコンクリート製防潮堤を連続的に長距離にわ たり建設することは非現実的である.そのため、砂浜海 岸を有する沿岸部やその背後地の特徴に即した防災・減 災対策を検討することは極めて重要である.

本研究では、平野部において多くの被害者を出した宮 城県名取市沿岸部を対象として、広範囲にわたる家屋被 害調査を行い、建築構造(木造,鉄筋コンクリート造, 鉄骨造)別の家屋被災状況や津波痕跡水位を把握する. それらの結果に基づいて、家屋流出・損壊に関する津波 被害関数(Koshimura ら, 2009)を推定する. さらに、被 害調査結果から見出された海岸砂丘による背後地の減災 効果を定量的に検討した結果を示す.

2. 研究方法

(1) 観測サイト

観測サイトは、宮城県仙台市の南側に位置する名取市 の沿岸部であり、その南部には仙台空港が存在している. 名取市沿岸部における震災前後の様子を空中写真で比べ ると、図-1に示すように、震災後には多くの建物が流出 しており、その様子は名取川右岸側に位置する閖上地区 において顕著である.沿岸部の農地も浸水している様子 が伺える.また、大部分が盛土されていた東部有料道路 の陸側と海側では、被害状況が大きく異なり、防潮堤と しての東部有料道路の機能が発揮されたことが伺える.

このエリアにおける観測範囲は、図-1に示された名取

川右岸側から仙台空港北側までであり、東部有料道路の 陸側も含めて浸水域全体を概ねカバーするように設定さ れている(詳細は後述の図-3 参照).このエリアの海岸 には、大小の人工砂丘が存在している.閖上漁港の脇に ある大砂丘は、漁港内の浚渫土砂を盛土したものであり、 高さ約 9.1[T.P.m]、沿岸方向の長さ約 200m となってい る.この大砂丘の南側には、高さ 4[T.P.m]の小砂丘が沿 岸方向に連続的に存在している(以下、大砂丘を単に人 工砂丘と呼ぶ).また、海岸線と並行して防潮林が存在 している.防潮林自体の津波減災効果は報告されている が(例えば、Danielsen ら、2005; Tanaka ら、2007)、 ここでは取り扱わない.

(2) 観測方法

上記の観測サイトにおいて、家屋被害調査と浸水深計 測という2種類の調査を行った.まず、家屋被害調査と して、観測対象エリアにおける家屋位置が特定できる住 宅地図を持参し、各家屋の被害状況を調査する.その際 には、庄司ら (2007)の定義に倣い、図-2 に示すように、

「全壊または基礎のみ残した流出(以下,単に流出)」,「二 階損壊」,「一階損壊」,「浸水もしくは無被害」の4段階

(a)流出

(b)二階損壊

- 宿損壊 (図−2 家屋被害状況の分類

に分類する.調査対象家屋は 5253 棟である.さらに,調 査時に撮影した家屋写真を元に,判別可能な「一階損壊」 と「二階損壊」の家屋に対して,建築構造を「木造」,「鉄 筋コンクリート(RC)造」,「鉄骨造」に分類する.

一方,浸水深計測では、Static GPS(FlexPak, NovAtel 製),VRS 方式 RTK-GPS(R4, Trimble 製)やレーザー距 離計(DISTOTMD5, Leica 製)を用いて浸水深や浸水高を 計測した.具体的には、図-2(d)に示すように、家屋に残 された浸水痕を探し、その地点の標高を RTK-GPS によ り計測し、スタッフやレーザー距離計を用いて浸水深を 測り、それらの和を浸水高とした.

上記の調査を2011/5/10~12と同年6/11~12の二回に分けて実施した.一回目では、主に対象サイトの北東側を調査し、二回目では、残りの南西側について計測した. 調査時には、既に一部の家屋でがれきの撤去が進んでおり、「流出」と判定した家屋にがれき撤去後のものが含まれている可能性がある.そこで震災直後の衛星画像(図-1)で家屋流出状況を確認したところ、閖上地区において「流出」と判定された家屋の一部が残存していた.そのため、それらの残存家屋は「二階損壊」とし、その他は得られた調査結果をそのままデータ解析に使用する.

観測結果と考察

(1) 家屋被害状況

観測サイトである名取市沿岸部における家屋被害状況 を把握するために、被害状況マップを図-3に示す.ここ では、被害状況を「流出」、「二階損壊」、「一階損壊」、「浸 水・無被害」の4段階で分類し、衛星写真から抽出され た浸水範囲も図示する.また、図中には、目安として沿 岸からの距離も表示する.これを見ると、「流出」は沿岸

図-3 家屋被害状況マップ(図中の二重線は沿岸からの距離を示す)

部に多く、特に沿岸から 1km 以内では大部分の家屋が流 出している.このエリアで流出せずに残った家屋として は、鉄骨造や RC 造の建物の一部や、海岸部に作られた 人工砂丘の背後エリアの建物が見られた.また、沿岸か ら1.5~3km の範囲では、主として「二階損壊」や「一階 損壊」が確認されるが、「流出」家屋も点在していること が分かる.これは、閖上地区の背後には、名取川沿い以 外では農地が広がり、その農地における津波のエネルギ ーロスが住宅密集地と比べて小さいため、沿岸からの距 離が離れても農地周辺に点在する家屋の一部が流出した ものと考えられる.さらに、東部有料道路の陸側では、 田畑において浸水していたものの、家屋被害はほとんど 見られない.これより、東部有料道路が防潮堤としての 一定の役割を果たしたことが分かる.

(2) 建物構造別の家屋被害状況

家屋の被害状況を建物構造別に分類したものを図-4 に 示す.ここでは、流出せずに残存した建物の棟数を構造 別に数え、沿岸からの距離に対する残存率(=沿岸から ある距離までの残存棟数/対象範囲の総残存棟数)を構 造別に求めたものである.総残存棟数は、木造・RC造・ 鉄骨造でそれぞれ 532, 57, 88 棟である.これより、沿 岸から 600m あたりから残存率は増加し始めるが、その

増加割合は RC 造が最も大きくなっており,相対的に鉄 骨造や木造の残存率は小さい.また,RC 造の残存率を陸 側に 500m 程度ずらすと鉄骨造や木造の結果と類似して いる.後述する浸水深(図−5)では,沿岸からの距離が 500m 異なると最大 2m 程度の差が生じるため,RC 造に することにより,鉄骨造や木造と比べて,浸水深 2m 増 加分に相当する流体力に耐えていることが示された.

(3) 津波被害関数の推定結果

これらの結果に基づいて、観測対象範囲における家屋 の津波被害関数を推定することを試みる.そのために、 まず、沿岸からの距離に対する浸水深と家屋被害率の観 測結果を図-5に示す.ここで、浸水深データは観測生デ

図-5 沿岸からの距離に対する浸水深と家屋被害率の変化

図-6 「流出」及び「流出+損壊」被害に対する津波 被害関数

ータであり、家屋被害率とは、各エリア(ここでは沿岸 からの距離500m毎に区切られた範囲)における総建物数 に対する被害棟数の比であり、家屋被害状況として「流 出」及び「流出+損壊」を選定する.また、各観測値に 対して得られた近似曲線も合わせて表示している.なお、 後述するように、人工砂丘の背後領域では、その他の領 域と比べて家屋被害状況が異なっているが、人工砂丘の 沿岸方向長さが200mと観測範囲と比べると小さいため、 ここでは、それらの影響を考慮せずにデータを取りまと めている.これより、浸水深は沿岸からの距離と共に指 数関数的に減少し、沿岸から0.5kmで浸水深8m程度で あったのが、1.5kmでは約3m、3kmでは0.5mとなっ ている.一方、家屋被害率については、「流出」被害率は、 沿岸からの距離と共に指数関数的に減少しており、浸水 深と同様な傾向が見られる.具体的には、流出被害率は、

図-7 人工砂丘背後における家屋被害マップ(凡例は図-3と同じ)

沿岸からの距離が 0.5km 地点ではほぼ 100%であるが, 1.5km 地点では 20%以下になり, 2.5km 地点以降では流 出家屋はほぼ 0 である.また、「流出+損壊」被害率に関 しては、同様に、沿岸からの距離と共に減少するものの、 その様子は「流出」のみの場合とは異なっている.すな わち、「流出+損壊」被害率は、沿岸から 1km 地点まで ほぼ 100%であり、浸水深が 2m となる 2km 地点におい ても 50%を越え、浸水深が 1m 程度となる 2.5km 地点に おいて 20%程度の結果となっている.これらの結果より、 浸水深が 5m を越える沿岸から 1km 地点までは流出被害 が多い.一方、浸水深が 2~5m となる 1~2km 地点では 損壊被害が顕著であり、このエリアでは家屋の嵩上げを 2m 行うことで、家屋被害を大幅に抑制できることが分か る.

これらの観測結果に基づいて津波被害関数を算定する ために、津波外力として浸水深を選定すると、観測結果 に対して得られた近似曲線から浸水深と家屋被害率の関 係(津波被害関数)をまとめたものを図-6に示す.ここ でも家屋被害率として、「流出」及び「流出+損壊」被害 について図示している.これより、「流出」被害率は浸水 深と共に直線的に増加するが、「流失+損壊」被害率の場 合には浸水深が0.5mを越えて急激に増加し、3mを越え ると緩やかに増加する、という興味深い結果が得られた. この津波被害関数と図-4、5の結果を合わせて、浸水深に 対する家屋被害率を想定でき、居住可能範囲の設定や居 住する場合の具体策(家屋構造や家屋の嵩上げ等)を提 示することができる.

(4) 海岸砂丘の減災効果

図-3 に示されている家屋被害マップを詳細に見ると, 図-7 のように、人工砂丘の背後では、海岸近くにも関わ らず建物は残存していたことが分かる.この人工砂丘の 高さは 9.1[T.P.m]であり、沿岸近くの浸水高も 9-10m 程 度であったので、今回の津波はわずかに越流したか、も

図-8 砂丘背後と砂丘無しのエリアにおける家屋被 害率(流出)の比較

しくは、ほとんど越流しておらず、そのため、砂丘背後 地における減災効果が見られたことが考えられる.

このことを定量的に評価するために、家屋被害マップ を用いて、図-7のように人工砂丘の背後エリアとその周 囲の砂丘が無いエリアに分けた形で「流出」被害率を抽 出した結果を図-8に示す.なお、人工砂丘の中心位置は 沿岸から 0.23km に相当している.これより、沿岸から 1km 地点までは、砂丘背後の方が流出被害率は低く、海 岸砂丘の減災効果が定量的に示された.ただし、砂丘か らの距離が離れると、両データの差は小さく、沿岸方向 の長さが限定的な今回の人工砂丘の場合には、減災効果 の範囲も限定されている.また、人工砂丘はほとんど越 流せず浸食されていないが、人工砂丘の南側に位置する 小砂丘はスポット的に浸食されていた.このため、海岸 砂丘を津波減災対策として用いるには、越流されても壊 れない補強技術の導入が不可避であり、柳沢ら(2012) はそのための検討を既に行っている.

4. まとめ

本研究では、津波被害が大きかった宮城県名取市沿岸 部を対象として、5000棟を越える家屋に関する津波被害 状況を調査した.得られた主な結論は以下の通りである. 1)家屋被害状況としては、沿岸から1km以内では大部 分の家屋が流出し、1.5~3kmの範囲では、主として「二 階損壊」や「一階損壊」が顕著であった.また、東部有 料道路の陸側では、家屋被害はほとんど見られず、東部 有料道路における防潮堤としての役割が確認された.

2) 建物構造別に被害状況を比べると, RC 造は木造や鉄 骨造よりも家屋残存率が高くなっており, RC 造にするこ とにより,鉄骨造や木造よりも浸水深 2m 増加分に相当 する流体力に耐えていることが示唆された.

3) 浸水深を津波外力とした津波被害関数を算出した結果, 「流出」被害率は浸水深と共に直線的に増加するが,「流 失+損壊」被害率の場合には浸水深が 0.5m を越えて急 激に増加し, 3m を越えると緩やかに増加しており,両者 で異なる関数となった.これらの結果より,浸水深に対 する家屋被害率や居住可能範囲の設定,居住する場合の 津波対策を提示することが可能となる.

4) 人工砂丘の背後エリアでは、砂丘無しのエリアと比べ て流出被害率が小さくなっており、海岸砂丘による減災 効果が定量的に明らかとなった.

謝辞:本研究は、三井物産環境基金・2011 年度復興助成 (研究代表者:二瓶泰雄)によって実施された.浸水深 計測で用いた Static GPS の使用に際しては、東京理科大 学理工学部土木工学科佐伯昌之准教授に多大なご協力を 頂いた.東京理科大学理工学部土木工学科水理研究室学 生には、大変な観測作業を実施して頂いた.ここに記し て深甚なる謝意を表します.

参考文献

- 河合弘泰・佐藤真・川口浩二・関克巳 (2011):平成23年 (2011年)東北地方太平洋沖地震津波の特性,港湾空港技術研究所報告,Vol.50,No.4, pp.3-64.
- 庄司学・森山哲雄・幸左賢二・松富英夫・鴫原良典・村嶋陽一 (2007):2006年ジャワ島南西沖地震津波による家屋等構 造物の被災分析,海岸工学論文集, Vol.54, No.2, pp.861-865.
- 柳沢舞美・二瓶泰雄・山口晋平・川邊翔平・龍岡文夫(2012): 海岸砂丘と補強盛土技術を組み合わせた新形式防潮堤の提 案,土木学会論文集 B2(海岸工学), Vol.59(印刷中).
- Danielsen, F., M. K. Sørensen, M. F. Olwig, V. Selvam, F. Parish, N. D. Burgess, T. Hiraishi, V. M. Karunagaran, M. S. Rasmussen, L. B. Hansen, A. Quarto and N. Suryadiputra (2005): The Asian tsunami: a protective role for coastal vegetation, Science, Vol. 310, 643p.
- Gokon, H. and S. Koshimura (2012): Mapping of building damage of the 2011 Tohoku Earthquake Tsunami in Miyagi Prefecture, Coastal Engineering Journal, Vol.54, No.1, 1250006(12pages).
- Koshimura, S., T. Oie, H. Yanagisawa and F. Imamura (2009): Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia, Coastal Engineering Journal, Vol.51, No.3, pp.243-273.
- Mori, N., T. Takahashi and The 2011 Tohoku Earthquake Tsunami Joint Survey Group (2012): Nationwide post event survey and analysis of the 2011 Tohoku earthquake tsunami, Coastal engineering Journal, Vol.54, No.1, 1250001(27pages).
- Ogasawara, T., Y. Matsubayashi, S. Sakai and T. Yasuda (2012): Characteristics of the 2011Tohoku earthquake and tsunami and its impact on the northern Iwate coast, Coastal Engineering Journal, Vol.54, No.1, 1250003(16pages).
- Tanaka, N., Y. Sasaki, M. I. M. Mowjood, K. B. S. N. Jinadasa and S. Homchuen (2007): Coastal vegetation structures and their functions in tsunami protection: experience of the recent Indian Ocean tsunami, Landscape and Ecological Engineering, Vol.3, No.1, pp.33-45.