江戸川における H-ADCP の流速連続モニタリング

CONTINUOUS MONITORING OF RIVER VELOCITY IN EDO RIVER USING H-ADCP

二瓶泰雄¹·北山秀飛²·江端萌奈美²·色川有²

Yasuo Nihei, Hideto Kitayama, Monami Ebata and Yuu Irokawa

¹正会員 博(工) 東京理科大学助教授 理工学部土木工学科(〒278-8510 千葉県野田市山崎2641) ²学生員 学(工) 東京理科大学大学院 理工学研究科土木工学専攻(同上)

We have recently attempted to develop a new real-time monitoring system for river discharge with an H-ADCP (horizontal acoustic Doppler current profiler) measurement and numerical simulation. In the present paper, the field data for velocity measured with the H-ADCP in a main channel of the Edo River are introduced. The measuring accuracy of the H-ADCP is discussed with the comparison of river velocities obtained by the H-ADCP and the other measuring instrument like an ADCP. The observed result also indicates that the temporal and spatial variations of river velocity are dominant in a flood-flow condition, demonstrating the importance of measuring velocity profile at a horizontal line with the H-ADCP for evaluation of river discharge.

Key Words: H-ADCP, river velocity, discharge, real-time monitoring, Edo River

1. はじめに

河川計画上,流量は最も重要な水理量の一つである.現行の流量算定法としては,流量と水位との相 関関係(H-Q曲線)及び水位の自動観測データから 流量の時系列データを取得する,という「間接」観 測法が一般的に採用されている^{1).2)}.しかしながら, H-Q曲線による流量算定には,H-Q関係が洪水中に ループを取る等の多くの問題点が指摘されている¹⁾. これより,流量を精度良く「直接」計測するモニタ リングシステムの確立が求められている.

上記の要請に対しては,一台で流速横断分布計測 が可能な水平設置型の超音波ドップラー流速分布計

(Horizontal Acoustic Doppler Current Profiler,以下, H-ADCP と呼ぶ)³は極めて有望な機器と考えられる. H-ADCP による流量観測は,鶴見川等において既に 行われている^{4),5)}. そこでの調査方法としては,自動 昇降装置に取り付けられたH-ADCPを定期的に鉛直 移動させ,各高さにおける流速横断分布を計測し, それから流量を算出する.H-ADCP と自動昇降装置 等を含む流量観測システムは,非常に高価であり, かつ,大掛かりな装置となるため,この観測システ ムが導入されている河川は限定されている.

それに対して,著者らは,H-ADCPの計測技術と 数値解析技術を融合した高規格自動流量モニタリン グシステムの開発に取り組んでいる^{6,7)}.ここでは, 1 台の H-ADCP により計測される流速横断分布から, 河川流解析を介して流量を算出する.このシステム は①H-ADCPによる流速計測,②簡易テレメータ⁸⁾, ③データ同化手法を組み込んだ三次元河川流計算⁷⁾, という3つのサブシステムから構成される.本論文 では,①として,H-ADCP による河川流計測を江戸 川・野田橋付近において約3ヶ月間実施し,未だ十 分に検討されていないH-ADCPの流速計測精度や流 速横断分布特性の把握を試みる.H-ADCP 観測とと もに ADCP による流量観測も実施し,①H-ADCP の 流速測定精度,②出水時における流速横断分布の特 徴,③H-ADCP データと流量の相関性,を検討する.

2. H-ADCP を用いた流速観測の概要

(1) H-ADCP について

本調査では H-ADCP (Workhorse 600kHz, RDI 製) を用いた(図-1). H-ADCP の計測範囲は, 600kHz の場合には 70~100m であり,この H-ADCP は我が 国の低水路流速調査に概ね適している. H-ADCP の 基本性能としては,最小層厚は 0.25m,最大層数は 128,流速測定範囲は最大で 10m/s (標準) である.

H-ADCP には, **図-1** に示すように, 超音波パルス を送受信するトランスデューサーが3つ存在する. このうち左右のトランスデューサー*T*₁, *T*₂ において, **図-2** に示されるビーム軸方向の速度*V*₁, *V*₂ (トラ

図-1 H-ADCPの概観

図-2 H-ADCP により計測される各流速の定義(y軸は 対岸方向, x軸はy軸と直角方向に定義)

ンスデューサーに向かう方向を正とする)を計測す る.これから、図-2に示す水平2方向(x, y方向) の流速 u, v を算出するには、鉛直分布計測用の ADCP と同様に⁸、「超音波の散乱体 $S_1 \ge S_2$ の速度 が同一である」と仮定して得られる次式を用いる.

$$u = \frac{V_1 - V_2}{2\sin\theta_H} \tag{1}$$

$$v = \frac{-V_1 - V_2}{2\cos\theta_H} \tag{2}$$

ここで、 θ_H は対岸方向とビーム軸方向の角度(=25 度)である.なお、前述の仮定では水中の散乱体 S_1 と S_2 の速度が同一である必要があるが、トランスデ ューサー面からの距離 L とともに散乱体間の距離 $2L \tan \theta$ も当然大きくなる.例えば、L=40m で 37.3m, L=80m で 74.6m となるので、この仮定が成立する観 測場所の選定や仮定の適用範囲の検討が必要となる.

(2) 観測概要

H-ADCPを用いた流速観測を2005年9月5日から 12月6日にわたり実施した.観測サイトである江戸 川中流部・野田水位観測所付近(河口から約 39km 地点)の平面図を図-3(a)に示す. H-ADCPは, 左岸 側に位置する野田水位観測所近くにある水位標の高 さ 3.4m にて右岸向きに設置された(同図(b)). そこ での断面形は複断面であり、低水路幅は約70mであ る. 超音波はある広がりを持って水中を伝播してお り、本測器(600kHz)の場合、その角度 θ_V (ビー ム幅)は1度である. そのため, H-ADCP の計測範 囲は、同図のように H-ADCP からの距離 y とともに 直線的に広がり、y=40m地点での広がり幅はおよそ 0.7m である. なお, 作業の関係上, H-ADCP を完全 に水平には設置できず, H-ADCP の傾斜角度は下向 きに 0.3 度となった. また, H-ADCP による計測断 面(y 方向)は横断方向(主流方向と直角方向)か ら約10度ずれており, H-ADCPはやや上流向きに設 置されている.

図-5 全期間中の水位変動と主流方向流速コンター

H-ADCPの計測条件としては、サンプリング間隔 10分、計測層数80層、測定層厚1.0m、不感帯幅(ト ランスデューサー面から計測を行う第一層目までの 距離)1mである.このとき流速計測誤差の標準偏差 は1.04cm/sである.また、H-ADCPデータをリアル タイムで取得するために、H-ADCP 本体と繋がるデ ータ通信・電源供給用ケーブル(長さ100m)を野田 水位観測所内まで引き込み、2つの方法でデータ転 送を行った.観測期間前半(2005年9月3日から11 月4日)には、市販されている小型のデータ転送装 置(Watch-ADCP_Jr、㈱ハイドロシステム開発製) を用いた.それ以降の期間では、著者らで構築して いる、市販のハードウェア(PC と PHS 等)のみか ら構成される簡易テレメータシステム⁶を採用した.

H-ADCP 観測期間中に ADCP を用いた流速・流量 調査を実施した⁹. ここでは,H-ADCP の観測断面 において3回(9/13,10/13,10/26),その断面より 約200m 上流の野田橋にて12回,合計15回の ADCP 調査を行った.これらの調査日はいずれも低水時で あった.ここでは,ADCP を鉛直下向きに水面付近 に設置して流速鉛直分布計測を行いつつ,ADCP を 横断方向に移動させて,横断面内における流速分布 や流量を計測した.ここで得られた流速・流量値と H-ADCP の流速データを比較する.

3. 結果と考察

(1) 全観測期間中の水位変動とH-ADCPのデータ取 得状況

図-5は、全観測期間における水位変動及び H-ADCP により得られた主流方向流速コンターを示 している. ここで, 水位データは野田水位観測所に おける測定値である.これを見ると、観測開始直後 の9月5日から12日にかけて小さな出水が発生した が、高水敷は冠水しなかった.この期間を除くと水 位変動もそれほど見られず、本観測期間の大部分は 低水時であることが分かる.また、同図(b)より, H-ADCP は良好にデータを取得することができてお り、データ欠測は全く生じなかった、当初、大きな ごみや植生,流木などが水位標に引っかかり, H-ADCP の計測に支障が出ることが予想されたが、 今回の調査では、設置から撤収まで一度もメンテナ ンスをせずにH-ADCPデータを取得することができ た. ただし、より大きな出水時には、上記のような 問題でデータ欠測が生じる可能性は否めない.

(2) H-ADCP の流速計測精度

H-ADCP による流速計測の精度を調べるために, H-ADCP と ADCP により計測された主流方向流速の 横断分布を図-6 に示す. ここでは H-ADCP 計測断面 において実施した ADCP の観測結果 2 回分(10/13,

図-7 各トランスデューサーにより計測されるビーム軸方向流速の絶対値に関する横断分布(10月13日11:10)

10/26)を記載しており,ADCP データとしては,図 -3(b)に示す H-ADCP の測定範囲の平均値を図中に プロットしている.なお,図中にはADCP 観測中及 びその前後における H-ADCP データが示されている. この図を見ると,両データともに,H-ADCP が設置 されている左岸側よりも右岸側の流速が大きい.こ れは,図-3(b)に示すように,右岸側の水深が相対的 に深いことと関係している.両者のデータを比べる と,y≦36m では,両者の流速データは概ね一致する. それに対して,右岸境界部の y>36m では,ADCP の 流速値の方が H-ADCP の結果よりも明確に大きい. この傾向は,9/13 における観測結果からも確認され

ている.また,ADCP 観測時には,電磁流速計によ る流速計測を合わせて行っており,その結果より ADCP と電磁流速計の流速値は横断面全体にわたり 概ね一致していた¹⁰.これより,対岸の右岸境界付 近において H-ADCP の流速計測誤差が生じているこ とが分かる.

この H-ADCP の流速誤差の要因を調べるために, 各トランスデューサーが計測するビーム軸方向流速 V_1 , V_2 の絶対値に関する横断分布を**図-7** に示す. ここでは,一例として,**図-6(a)**と同じ 10/13 におけ る結果が図示されている.各流速がほぼ0となる位 置は, $|V_1|$ では y>43m となるのに対して, $|V_2|$ では y>37m となっており,右岸境界部では両者の流速変 化が大きく異なっている.これは,H-ADCP の向き が横断方向よりも上流側に約 10 度ずれて,下流向き のトランスデューサー T_2 から対岸までの距離が上 流向きのトランスデューサー T_1 の場合よりも相対 的に短くなっているためである.この結果,トラン スデューサー $T_1 \ge T_2$ で計測する散乱体の速度が同 ーとなる,という仮定が右岸境界付近では成り立っ ていないものと考えられる.

H-ADCP が設置された観測サイトは, 図-3(a) に示 されているように,ほぼ直線的な低水路であるが, 水平面内での H-ADCP の設置角度によっては,対岸 側における流速計測精度は大きく低下する可能性が あることが実証された.そこで以下では,y≦36m ま での流速データを用いて解析を行う.

(3) 出水時における流速横断分布特性

H-ADCP により得られた流速横断分布の特徴を抽 出するために、本観測期間中に唯一生じた出水時 (9/5~12)に着目してデータ解析を試みる. 図-8 は出水時の増水期と減水期における流速ベクトル分 布の一例を示す.これより、流向は大局的には主流 方向となっている.それに対して、流速の大きさ自 体に関しては、全体的には右岸側の流速値が大きい ものの、細かな変化が生じている.次に、水位と流 速の関係を調べるために、左岸側(y=5m)と右岸側

(y=35m)における水位と主流方向流速の相関図を 図-9に示す.ここで流速データに関しては、1時間 移動平均を施している.右岸側では、同一水位にお いて増水期の流速が減水期の値よりも大きい、とい うよく知られている水位-流速関係のループがはっ きりと見られる.しかしながら、左岸側の場合には、 右岸側ほど明確なループは形成されておらず、水位 ピーク付近では、増水期と減水期の流速の大小関係 が一部逆転しているところも見られる.さらに、特 筆すべきこととしては、左岸側における流速は周期 的に大きく変化しており、その様子は水位 6m 以上 において顕著である.

このような流速横断分布の時空間変動特性を詳細に把握するために、出水時における無次元主流方向流速コンターを図-10に示す.ここで無次元主流方向流速は、主流方向流速をその時刻における横断平均流速値で除したものである.ここでも1時間移動平均された流速値を用いる.また、無次元主流方向流速は 0.7 から 1.2 の範囲で変化しているが、ここ

では 0.9 から 1.1 の範囲で図化する. これより,無 次元流速の高速域は,増水期から減水期前半には右 岸側にあるが,減水期後半には中央寄りに移動して いる(図中点線).一方低速域は,左岸側に固定され ておらず,図中矢印のように,増水期や水位ピーク 期では左岸側から中央部へ移動し,減水期では中央 部に現れている.また,図-9 で見られた流速の周期 的な変化は,左岸側から中央部にわたり生じており, 特に増水期から水位ピーク期ではダイナミックな変 化が生じている.これらの流速データに対してスペ クトル解析を行った結果,卓越周期は 4~8 時間とな ることが確認された.

これらの流速横断分布の時空間変化を引き起こす 要因は河床変化であると推察される.山口¹¹⁾は洪水 中における水位-流速関係の変化と河床変化との関 連性について指摘している.そこでは横断方向に離 散的に配置された電波流速計のデータを用いている が、本研究で採用している H-ADCP の方がより詳細 な流速横断分布を捉えることが容易であり、流速変

図-11 H-ADCP による横断平均流速と ADCP データ から算出された断面平均流速の相関図

化と河床変動の関係を検討するのに適していると考 えられる.また,流速横断分布がこのように複雑な 時空間変化をするため,流量算定には「点」流速デ ータだけでは限界があり,少なくとも横断分布のよ うな「線」流速データを計測することが不可欠であ ることが明らかとなった.

(4) H-ADCP データと流量の相関性

H-ADCP による流速データから流量推定の可能性 を検討するために、H-ADCP による横断平均流速と ADCP により得られた断面平均流速の相関図を図 -11 に示す. この断面平均流速は, ADCP 観測から 得られた流量値を断面積で除している. この図を見 ると、H-ADCP による横断平均流速と ADCP による 断面平均流速は、概ね良好な相関関係を有している ことが分かる.両者に対して近似直線を当てはめた ところ.両者の相関係数rは0.99となった.ここで のサンプル数は12と少ないものの,両者の相関性は 高く、両者は線形関係となっていることが分かる. 以上より, H-ADCP の流速計測データから断面平均 流速や流量を精度良く推定できる可能性が示唆され た. なお、ここでの議論は低水時のデータに限定さ れており, 今後観測データを蓄積して, 出水時を含 めた検討を行う必要がある.

4. おわりに

本研究で得られた主な結論は以下のとおりである. (1) H-ADCP の流速計測精度を調べた結果,対岸側 (右岸境界付近)において H-ADCP の計測誤差が顕 著となった. その要因は H-ADCP の設置角度に起因 して,各トランスデューサーが計測する散乱体速度 が同一であるという仮定が成立しないためである. (2) 出水時における流速横断分布特性は時間的・空間的に大きく変化しており,横断面内の高速・低速域が固定していないことが示された.このため,流量算定に用いる流速データとしては,「点」データよりも「線」データが適していることが実証された. (3) H-ADCP による流速横断平均値と ADCP により得られた断面平均流速(=流量/断面積)の相関性は高く(r=0.99),低水時では H-ADCP データから流量を精度良く推定し得ることが示唆された.

謝辞:本研究は,NEDO・平成17年度産業技術研究 助成事業(研究代表者:二瓶泰雄)の成果の一部で ある.国土交通省関東地方整備局江戸川河川事務所 には,現地観測に関して様々な便宜をはかって頂い た.現地調査の実施には,北山和典氏をはじめとす る(㈱ニュージェックの皆様,(㈱ハイドロシステム開 発・橘田隆史氏,(㈱SEA・中川拓朗氏,疋田真氏に は多大な御助力を頂いた.本観測で用いた H-ADCP やデータ転送装置(Watch-ADCP_Jr)は㈱ハイドロ システム開発からお借りしたものである.ここに記 して深甚なる謝意を表します.

参考文献

- 1) 土木学会:水理公式集 [平成 11 年度版],丸善, pp.75-86, 1999.
- 2) 吉川秀夫:河川工学,朝倉書店, pp.23-31, 1980.
- Wang, F. and Huang, H. : Horizontal acoustic Doppler current profiler (H-ADCP) for real-time open channel flow measurement: Flow calculation model and field validation, XXXI IAHR CONGRESS, pp.319-328, 2005.
- 大東秀光, 上坂薫, 南修平, 劉炳義, 橘田隆史: H-ADCP を用いた河川流量観測システムの開発と現地試験観 測結果について(3), 土木学会年次学術講演会講演概 要集第2部, Vol.56, pp.454-455, 2001.
- 5) 岡田将治,森彰彦,海野修司,昆敏之,山田正:鶴見 川感潮域における H-ADCP を用いた流量観測,河川 技術論文集, Vol.11, pp.243-248, 2005.
- 北山秀飛、二瓶泰雄: H-ADCP 用簡易テレメータシス テムの構築, 土木学会年次学術講演会講演概要集第2 部, Vol.61, 2006(投稿中).
- 木水啓,二瓶泰雄:H-ADCP 観測と数値解析を融合した新しい河川流量推定システムの開発,土木学会年次学術講演会講演概要集第2部, Vol.61, 2006(投稿中).
- 8) 金子新,伊東集通: ADCP の普及と海洋学の発展,海の研究, Vol.3, pp.359-372, 1994.
- 9) 色川有,二瓶泰雄,北山秀飛: ADCP による流量観測 精度の検証,土木学会年次学術講演会講演概要集第2 部, Vol.61, 2006(投稿中).
- 江端萌奈美,二瓶泰雄,北山秀飛,色川有:ADCPと H-ADCP,電磁流速計の流速計測精度に関する相互比 較,土木学会年次学術講演会講演概要集第2部, Vol.61,2006(投稿中).
- 11) 山口高志:洪水流速および流量観測 -その2-,水 文・水資源学会誌, Vol.16, No.4, pp.439-448, 2003. (2006.4.6 受付)