水工学論文集, 第49巻, 2005年2月

河川洪水流シミュレーションに対する ネスティング計算法の適用

AN APPLICATION OF A NESTING APPROACH INTO A FLOOD FLOW COMPUTATION

佐藤慶太¹・二瓶泰雄² Keita SATO and Yasuo NIHEI

 1 正会員 博(工) ㈱ドーコン 河川部(〒004-8585 札幌市厚別区厚別中央 1 条 5 丁目 4-1) 2 正会員 博(工) 東京理科大学助教授 理工学部土木工学科(〒278-8510 千葉県野田市山崎2641)

To perform a three-dimensional current simulation in a wide region of a river with reducing computational load, we attempt to introduce a two-way nesting procedure, recently presented by the authors, into a three-dimensional numerical model for river flow. To examine the fundamental performance of the present model, we conduct the flood flow computation in the Edo River with the present numerical model. The results show that the computational results for the time sequences of discharge and lateral and vertical distributions of the streamwise velocity give good agreements with the observed data done by the authors. This fact demonstrates the fundamental applicability of the present numerical model with the nesting procedure to flood flow computations.

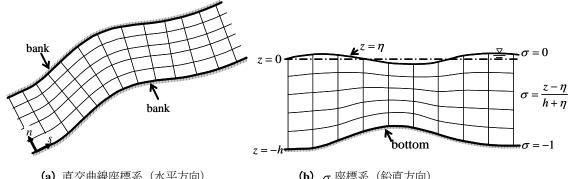
Key Words: nesting procedure, three-dimensional computation, flood flow, Edo River

1. はじめに

河道の洪水流特性を把握・予測することは、治水・ 利水・環境に配慮した形で河道整備・管理を実施していく上で重要な課題の一つである。このためには、現地河川におけるモニタリング網を展開していくことに加えて、数値シミュレーション技術を精緻化・高精度化していくことが必要であることは言うまでもない。このうち、数値計算に着目すると、一般的に見られる湾曲・蛇行している河道部における流れを精度良く再現するためには、陽的に二次流の効果を反映してない平面二次元解析法1)~5)ではその適用性に限界があり、流速の鉛直構造を考慮することが可能な三次元解析手法の適用が必要となる。

しかしながら,現地河川に対する三次元流動計算例自体が多くなく,また,三次元シミュレーションにおける計算負荷が大きいために,計算対象範囲として河川全域とせずに区切られたある領域を選定することが多い $^{6)\sim 8)}$. さらに,河川の連続性を考慮すると,開境界となる上流部や下流部における水位・流量条件に対して,より広域スケールの影響を加味した形で境界条件を設定する必要がある.以上のことより,広域の流動現象の影響を考慮し得る,計算効率性の高い三次元流動モデルの構築が望まれる.

このような要請に対する計算方法の一つとして,空


間解像度の異なる計算領域を複数設定し、領域間の計算結果を伝達しつつ同時並行的に計算する、というネスティング計算法の適用が挙げられる。この計算法は、低解像度格子を用いて広域スケールの計算をしつつ、必要な領域のみ高解像度格子を用いて計算する、という効率性の高い方法である。これまでに、このネスティング計算法は気象場や沿岸海水流動場の数値シミュレーションにおいて数多く用いられるものの^{9)、10)}、河川流シミュレーションへの適用例は、著者の知る限りでは皆無である。

本論文では、ネスティング計算法を組み込んだ三次元流動モデルに基づいて、江戸川における三次元洪水流シミュレーションを行うことを試みる。ここでのネスティング計算法としては、著者らが最近提案し、浅海域計算への適用性が確認されている新しい多重ネスティング計算法 ^{11)・12)} を採用している。ここでの計算結果と、別途行われた現地観測結果 ¹³⁾ との比較を通じて、ネスティング計算法を導入した本流動モデルの河川洪水流シミュレーションに対する有効性や妥当性について検討する。

2. 本流動モデルの概要

(1)基礎方程式系

ネスティング計算法を導入している本三次元流動モ

(a) 直交曲線座標系(水平方向)

(b) σ 座標系(鉛直方向)

図-1 本計算における水平・鉛直座標系

デルの基礎方程式系を記述する. 本計算では、後述す るように, 平面二次元計算と三次元計算を併用するた め、基礎方程式系は平面二次元場と三次元場に対する 連続式と運動方程式となる. ここで採用されている座 標系は、河道形状を簡便かつ適切に再現するために、 水平方向に対しては直交曲線座標系(図-1(a)),鉛 直方向に対しては σ 座標系(**図-1(b)**)である.以下 では、紙面の都合上、三次元場における基礎方程式の みを記述することとし, 連続式及び静水圧近似された 運動方程式は、次のとおりである.

$$\frac{1}{1+N}\frac{\partial u_s}{\partial s} + \frac{\partial u_n}{\partial n} + \frac{u_n}{(1+N)R} + \frac{1}{D}\frac{\partial w^*}{\partial \sigma} + \frac{1}{D}\frac{\partial D}{\partial t} = 0$$
(1)

$$\frac{\partial u_{s}}{\partial t} + \frac{u_{s}}{1+N} \frac{\partial u_{s}}{\partial s} + u_{n} \frac{\partial u_{s}}{\partial n} + \frac{w^{*}}{D} \frac{\partial u_{s}}{\partial \sigma} + \frac{u_{n}u_{s}}{(1+N)R} =$$

$$-\frac{g}{1+N} \left(\frac{\partial \eta}{\partial s} - i_{0} \right) + \frac{1}{1+N} \frac{\partial}{\partial s} \left(\frac{A_{H}}{1+N} \frac{\partial u_{s}}{\partial s} \right) + \frac{\partial}{\partial n} \left(A_{H} \frac{\partial u_{s}}{\partial n} \right) + \frac{1}{D} \frac{\partial}{\partial \sigma} \left(\frac{A_{V}}{D} \frac{\partial u_{s}}{\partial \sigma} \right) - \frac{aC_{b}}{2} u_{s} \sqrt{u_{s}^{2} + u_{n}^{2}} \tag{2}$$

$$\frac{\partial u_n}{\partial t} + \frac{u_s}{1+N} \frac{\partial u_n}{\partial s} + u_n \frac{\partial u_n}{\partial n} + \frac{w^*}{D} \frac{\partial u_n}{\partial \sigma} - \frac{u_s^2}{(1+N)R} =$$

$$-g \frac{\partial \eta}{\partial n} + \frac{1}{1+N} \frac{\partial}{\partial s} \left(\frac{A_H}{1+N} \frac{\partial u_n}{\partial s} \right) + \frac{\partial}{\partial n} \left(A_H \frac{\partial u_n}{\partial n} \right)$$

$$+ \frac{1}{D} \frac{\partial}{\partial \sigma} \left(\frac{A_V}{D} \frac{\partial u_n}{\partial \sigma} \right) - \frac{aC_b}{2} u_n \sqrt{u_s^2 + u_n^2}$$
(3)

ここで、s, n, σ (= $(z-\eta)/D$)は主流、横断、鉛直 方向, u_s , u_n , w^* は s, n, σ 方向流速, D は全水深 $(=h+\eta)$, η は水位, h は水深, g は重力加速度 $(=9.8\text{m/s}^2)$, i_0 は河床勾配, R は s 方向座標の曲率,

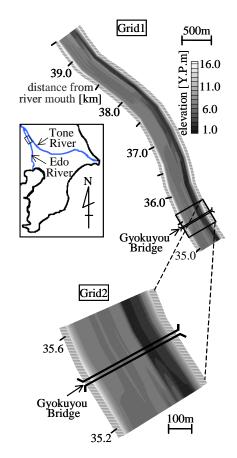


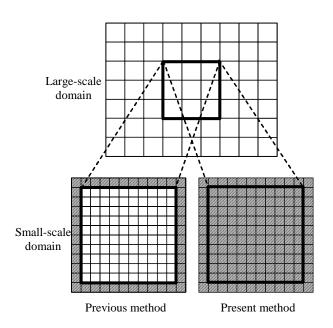
図-2 計算領域の設定

N=n/R を表している. 鉛直渦動粘性係数 A_V には 0 方程式モデルを適用している. 水平渦動粘性係数 A_H に 関しては乱れの非等方性を鑑みて,本計算では,鉛直 渦動粘性係数 A_V の 10 倍としている. また, 高水敷に 繁茂する植生による水理学的抵抗を評価するために, 式(2), (3) 中の右辺第五項に植生抵抗項を付加し ており、同項中のa、 C_b は各々植生密度パラメータ、 植生の形状抵抗係数であり、ここでは $aC_b/2=40\,\mathrm{m}^{-1}$ を与えている.

(2)ネスティング計算法

本計算では、江戸川中流部の玉葉橋(河口より35.5km 地点)における観測結果¹³⁾ と比較するために、**図-2** に示しているように、玉葉橋を含む大小2つの計算領域を設定している。ここでは、計算負荷を軽減させるために、大領域(Grid1)では平面二次元計算を、小領域(Grid2)では三次元計算をそれぞれ実施することとする。

この大領域と小領域の計算結果を伝達するために、著者らが提案している新たなネスティング計算法を用いる. 図ー3に示しているように、大領域計算結果が小領域計算の境界部のみに反映される従来のネスティング計算法と異なり、新しいネスティング計算法は大領域計算結果が小領域全体に反映されており、広域の流動現象を局所スケールの流動計算に合理的に考慮することが可能な方法である、このネスティング計算法に関しては、大領域計算結果を小領域計算に一方向的に反映させる one-way 手法 ¹¹⁾ と両領域の計算結果を双方向に交換する two-way 手法 ¹²⁾ が提案されており、本論文では two-way 手法を採用する. 図ー2に示しているように、大小二つの計算領域を対象とした場合には、two-way 手法の計算フローは以下のとおりである.


- ① まず、大領域における数値計算を行う.
- ② 次に、大領域計算結果を反映した形で小領域に おける計算を行う.
- ③ 小領域計算結果を大領域の計算格子毎に空間平 均する。
- ④ 小領域計算結果を取り込んだ形で大領域計算を 再度行う.
- ⑤ 大領域と小領域の計算結果が収束するまで、② ~④のプロセスを繰り返す.

上のような手順を踏むことにより、新しいネスティング手法では、大領域計算結果は小領域全体に取り込まれ、小領域計算結果は小領域とオーバーラップする大領域全体にわたって反映されることとなっている.

なお、小領域における三次元計算をより効率的に実施するために、三次元流動モデルに新しいモードスプリット法¹⁴⁾を組み込んでいる。各計算ステップにおいて平面二次元計算を実施し、数ステップに一度三次元計算を行うという通常のモードスプリット法に対して、ここで用いている新しいモードスプリット法は三次元計算を行う回数を大幅に減らし得る計算法である。ここでは、小領域(Grid2)における三次元計算と平面二次元計算の回数を1:100の割合で設定している。

(3) 計算条件

計算領域としては、玉葉橋及び野田水位観測所(国 土交通省,河口より39km地点)を含む大領域(Grid1,

図-3 従来及び新しいネスティング計算法の比較(ここでは、小領域計算における大領域計算結果の影響範囲(図中のハッチ部分)を示している)¹¹⁾

河口から 34.95~39.55km) と玉葉橋周辺の小領域(Grid2, 35.15~35.65km) とする. 主流・横断方向の格子幅としては, Grid1では各々100m, 10mであるのに対して, Grid2では 25m, 10mとしており, このネスティング計算では, 主流方向の空間解像度のみを向上させている. また, 計算期間としては, 現地観測 ¹³⁾ に合わせて 2003年8月9日12:00から12日0:00の60時間とする.

本計算における境界条件について記述する. まず, 平面二次元計算を行う大領域に関しては、洪水流の駆 動力となる水位変動を再現するために、上流端では野 田水位観測所における実測値を与えている. その他の 境界条件としては, 下流端では開放条件(流下方向の 空間勾配が 0) を、河道両岸では no-slip 条件をそれぞ れ課している. また, 底面摩擦の効果として, 水深平 均流速を用いて記述される底面摩擦応力を運動方程式 中に組み込んでいる. 一方, 三次元計算を実施する小 領域においては、流速や水位に対して、上流部では開 放条件,下流部では放射条件 15),河道両岸では no-slip 条件を各々採用している. また, 河床部においては対 数分布則、水表面に関しては slip 条件をそれぞれ与え ている. ここで、対数分布則の中の摩擦速度に対して は、平面二次元計算と三次元計算の整合性を保つため に、平面二次元計算における底面摩擦応力より与えて いる.

さらに、ここでは、ネスティング計算法を導入した本三次元流動モデルの有効性を検証するために、本流動モデルに基づく計算(以下、casel と呼ぶ)に加えて、ネスティング計算をせずに Gridl のみを対象とした平

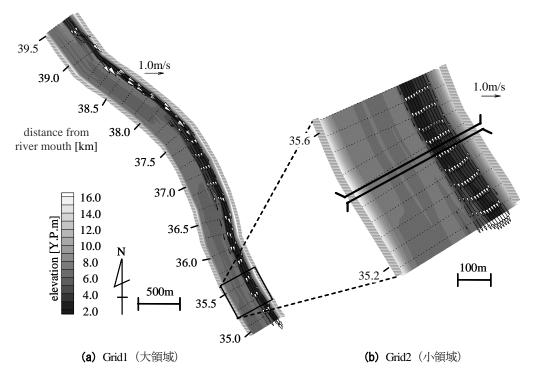


図-4 水位ピーク期における水深平均流速ベクトル (case1, 2003年8月10日20:00)

面二次元計算(以下, case2と呼ぶ)を実施し,両ケースの結果を現地観測結果と比較する.

3. 計算結果と考察

(1)平面流況

ネスティング計算法を用いた case1 における水位ピ ーク期 (8 月 10 日 20:00) での水平流速ベクトル分布図 を図-4に示す. ここでは、平面流況を見やすくする ために、各計算領域において流速ベクトルを適当に間 引いて図化している. これらを見ると, まず, Grid1 に関しては, 低水路幅の縦断方向の変化に伴って, 低 水路内の流速レベルは変化するものの、計算対象領域 における平均的な低水路の流速レベルは 1.0m/s 程度と なっている. これに対して、高水敷においては低水路 よりも1~2オーダ小さな流速値となっており、洪水流 の大部分は低水路を介して流下している様子がうかが える. このような結果は現地観測結果からも得られて おり、今回対象とした洪水流の流況は、複断面流れと いうよりも,単断面流れに近いものと思われる.次に, 玉葉橋周辺を対象とした Grid2 の計算結果を見てみる と、平面流況としては、流下するとともに低水路内の 流軸が右岸側寄りから左岸側寄りに変化している様子 が明確に現れている. また, このような流況は, Grid1 の計算結果を適切に反映した結果であることが分かる.

(2)観測結果と計算結果の比較

a) 水位と流量の時間変化

本流動モデルの有効性を検証するために、計算結果 と現地観測結果を比較することを試みる. 図-5は、 玉葉橋における水位及び流量の時間変化に関する観測 結果と計算結果を図示している. ここでの計算結果と しては、本流動モデルを用いた場合(case1)及び平面 二次元計算のみを行った場合 (case2) における Grid1 の結果を示している.また、ここでの流量の観測値は、 低水路内の5地点における高解像度ADCPによる観測 結果を同化データとして組み込んで数値シミュレーシ ョンを行う、という新しい河川流速・流量推定法 16 に基づいて算出している.この図より、まず、水位変 動に関しては、二つの計算結果ともに観測結果と概ね 一致しており,両計算結果に明確な差が生じていない. それに対して、流量に関しては、case 1 の方が case 2 の 結果よりも現地観測結果により近く, ネスティング計 算を介して、Grid1における流量の計算結果が良好に修 正されていることが分かる.

b)水深平均流速の横断分布

水深平均された主流方向流速の横断分布形状に関して、玉葉橋における現地観測結果と計算結果を比較したものを図-6に示す。ここでの流速値としては、増水期(図-5(b)中の期間 I)と水位ピーク期(期間 II)、減水期(期間III)の結果がプロットされている。計算

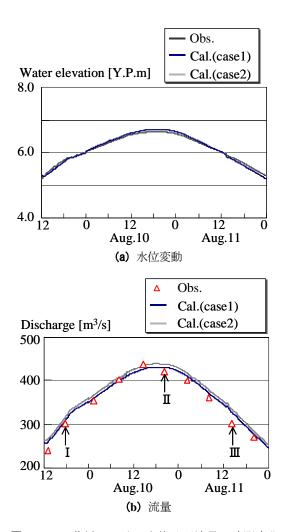
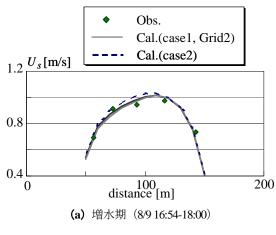
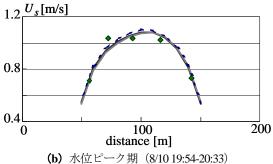




図-5 玉葉橋における水位及び流量の時間変化 (Grid1)

結果としては、case1 における Grid1 と2の結果と、case2 の結果が示されている. これらの結果を見ると, 低水 路-高水敷境界付近では、両岸側ともに、どの時刻に おいても3つの計算結果と観測結果は良好に一致して いる. 次に, 流速レベルの大きい低水路中央付近では, case2 における計算結果は概ね観測値を上回っている. それに対して、casel における Grid1 と 2の結果は、全 体的には観測値よりやや大きくなるものの, case1の計 算結果の方がcase2よりも観測値により一致している. このような傾向は、図-5(b)に示した流量の計算結果 と一致している. 以上のことから、ネスティング計算 法を用いることにより、洪水流計算における流量や流 速値の計算精度が向上しており、ネスティング計算法 を導入している本流動モデルの有効性が明らかとなっ た. なお、casel における Grid1 と 2の結果が全ての時 点においてほぼ一致していることを確認している.

なお、上述したように、本流動モデルにおいても、 低水路中央付近では計算結果と観測値は完全には一致 せず、両者の間には 0.05~0.10m/s 程度の差が生じてい

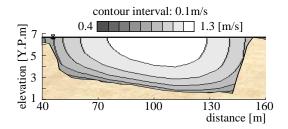
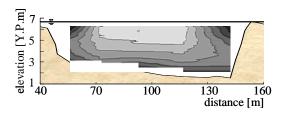


図-6 水深平均主流方向流速 U_s の横断分布(横軸は 左岸側天端からの距離を表す)


る. 主流方向流速の横断分布は、水平渦動粘性係数モデルの設定に大きな影響を受けていることが確認されている. 今後は、乱流モデルの精度と合わせて、洪水流シミュレーションに対する本ネスティング手法の適用性を検討する必要がある.

c) 主流方向流速の鉛直構造

さらに、主流方向流速の鉛直分布特性を見るために、 玉葉橋の低水路横断面内における主流方向流速コンターに関する観測結果と計算結果 (case1、Grid2)を**図ー7**に示す.ここでは、水位ピーク期 (8月10日20:00)における結果が図示されている.両者の結果を比較すると、流速コンターの大局的なパターンについては、計算結果と現地観測結果は概ね一致している.しかしながら、低水路側岸近傍では、計算結果については表

(a) 計算結果 (case1, Grid2, 8月10日20:00)

(b) 観測結果 (8月10日19:54~20:33)

図-7 玉葉橋断面における低水路流速コンター図(水 位ピーク期)

層付近の流速値が中層・底層流速よりも小さくなって おらず、現地観測結果と異なっている。これに関して は、高水敷に繁茂するヤナギなどに起因する植生抵抗 効果として、葉の繁茂状況を反映した形で植生抵抗係 数を鉛直方向に変化させる必要があるものの、本計算 では、この植生抵抗係数を鉛直方向に一定値として与 えている。今後、植生抵抗効果の取り扱いを、より詳 細に検討する必要がある。

4. おわりに

これまでネスティング計算法が適用されたことが皆無である河川流場を対象として、著者らが提案している新しいネスティング計算法 ^{11),12)} を導入した三次元流動モデルに基づく河川洪水流シミュレーションを実施した.ここでは、江戸川洪水流を対象として、大小2つの計算領域を設定し、大領域では平面二次元計算を、小領域においては三次元計算をそれぞれ行った.これらの計算結果と高解像度 ADCP に基づく洪水流調査結果 ¹³⁾ を比較したところ、水位や流量、低水路流速の横断・鉛直分布に関しては、両者は概ね一致していた.さらに、ネスティング計算法を導入することにより、大領域の計算精度がネスティング計算を実施しない時よりも向上することが明らかとなった.これらのことから、河川洪水流シミュレーションに対するネスティング計算法の有効性・妥当性が示された.

なお、本計算では、Grid1における流下方向長さが 4.6kmと江戸川全川スケールと比較すると短く、Grid1 に対してネスティング計算を用いずに初めから三次元 計算を適用することが可能な領域スケールである.し かしながら、ここでは、ネスティング手法を組み込んだ本河川流モデルの妥当性の検証を目的としているため、この領域サイズを選定しており、今後、より広域スケールにおける河川流シミュレーションに対して本モデルを適用する予定である.

参考文献

- 1) 福岡捷二,渡辺明英,上板恒雄,津森貴行:低水路河岸に樹木群のある河道の洪水流の構造—利根川新川通昭和56年8月洪水一,土木学会論文集,No.509/II-30,pp.79-89,1995.
- 2) 前野詩朗,石井宏幸,大賀祥一:台風 9810 号による百間川の植生倒伏状況と洪水解析による河道粗度の推定,河川技術論文集, Vol.6, pp.315-320, 2000.
- 3) 清水義彦,長田健吾,金文姫:礫床河川における近年の 洪水撹乱と植生破壊規模に関する考察,河川技術論文集, Vol.9, pp.377-382, 2003.
- 4) 井上卓也,濱木道大,荒井信行,中田満洋,高橋季承, 林田寿文,渡邊康玄:準3次元河床変動モデルによる石 狩川河口付近の昭和56年洪水再現計算,河川技術論文 集,Vol.10,pp.101-106,2004.
- 5) 安竹悠,清水康行,長谷川善彦,舛甚甲介:2003年台風 10号による北海道日高地方厚別川の氾濫解析,河川技術 論文集,Vol.10,pp.237-242,2004.
- Zanichelli, G, Caroni, E. and Fiorotto, V.: River bifurcation analysis by physical and numerical modeling, *J. Hydraul. Eng.*, ASCE, Vol.130, No.3, pp.237-242, 2004.
- Biron, P. M., Ramamurthy, A. S. and Han, S.: Three-dimensional numerical modeling of mixing at river confluences, *J. Hydraul. Eng.*, ASCE, Vol.130, No.3, pp.243-253, 2004.
- 8) 福岡捷二,池田隆,田村浩敏,豊田浩,重松良:利根川下流部における六大深掘れ原因と低水路改修の評価,河川技術論文集,Vol.10,pp.119-124,2004.
- 9) Birchfield, G. E.: Numerical prediction of hurricane movement with the use of a fine grid, *J. Meteor.*, Vol.17, pp.406-414, 1960.
- Oey, L.-Y.: The formation and maintenance of density fronts on U.S. southeastern continental shelf during winter, *J. Phys. Oceanogr.*, Vol.16, pp.1121-1135, 1986.
- 11) 二瓶泰雄, 佐藤慶太, 灘岡和夫, 熊野良子, 西村 司: 沿岸海水流動シミュレーションに対する新しい多重ネス ティング計算法の開発, 土木学会論文集, No.740/II-64, pp.171-183, 2003.
- 12) 二瓶泰雄, 町田佳隆, 佐藤慶太, 西村 司, 灘岡和夫: 新しい two-way ネスティング手法の開発, 海岸工学論文 集, Vol.49, No.1, pp.421-425, 2002.
- 13) 佐藤慶太, 二瓶泰雄, 木水啓, 飯田裕介: 洪水流観測への高解像度超音波ドップラー流速分布計の適用 ~江戸川を例にして~, 水工学論文集, Vol.48, pp.763-768, 2004.
- 14) 二瓶泰雄, 町田佳隆: 拡張 mode-split 法を用いた三次元 浅水流シミュレーション, 日本流体力学会年会講演要旨 集, pp.342-343, 2003.
- 15) Orlanski, I.: A simple boundary condition for unbounded hyperbolic flows, *J. Comput. Phys.*, Vol.21, pp.251-269, 1976.
- 16) 二瓶泰雄,木水啓:新しいデータ同化手法に基づく河川 流速・流量推定法の提案,土木学会論文集,2004(投稿 予定).

(2004.9.30 受付)