No.1174200321991

都市河川における流速·SS の鉛直構造に関する 高解像度 ADCP 調査

HIGH-RESOLUTION ADCP MEASUREMENTS ON VERTICAL STRUCTURES OF CURRENT AND SUSPENDED SOLID IN AN URBAN RIVER

> 二瓶泰雄¹ · 飯田裕介² · 佐藤慶太³ Yasuo NIHEI, Yusuke IIDA and Keita SATO

¹正会員 博(工) 東京理科大学助教授 理工学部土木工学科(〒278-8510千葉県野田市山崎2641)
²学生員 学(工) 東京理科大学大学院 理工学研究科土木工学専攻修士課程(同上)
³正会員 博(工) ㈱ドーコン 河川部(〒004-8585 札幌市厚別区厚別中央1条5丁目4-1)

To realize more accurate measurements for pollutant loads in an urban river, in the present study, a high-resolution, acoustic Doppler current profiler (HR-ADCP) was used to measure the vertical distributions of current and SS in an urban river under rainy conditions. The field measurements with the bottom-mounted HR-ADCP were carried out at the downstream point of the Oohori River, one of main inflow rivers in Lake Teganuma. The observed results show that characteristic vertical structures of the current and SS appear in hydrologic events and then the vertical distribution of SS flux in the streamwise direction vary considerably in rising and falling stages. With the HR-ADCP measurements, we grasp the temporal variation for the dependence of the erosion rate of sediments on flow conditions.

Key Words: ADCP, vertical structure, urban river, current, suspended solid

1. 序論

河川や湖沼、内湾における水環境管理の重要な指標と なる河川経由の汚濁物質負荷量を調査する時には、流量 と汚濁物質濃度(SS,栄養塩,有機物濃度等)をそれぞ れ計測し、それらの積により汚濁物質フラックスを算定 している. このうち流量観測の代表的なものとして、棒 浮子を用いた調査法が挙げられる1). この調査では、流 れのトレーサーとなる棒浮子を河川水中に投入すること により、流速の横断・鉛直方向変化を加味した形で流量 を算出し得るものの、この観測には様々な問題点が指摘 されている²⁾.また、汚濁物質濃度の計測に関しては、 断面内の一地点もしくは数地点において採水調査を行い、 その結果を代表値として与えることが多い. しかしなが ら,一般的な浮遊砂理論3),4)からも明らかなように、少 なくとも、SSや栄養塩・有機物の懸濁態濃度に関しては 何らかの鉛直分布特性を有していると考えられる.以上 のことから、汚濁物質フラックスの計測精度を向上させ るためには、鉛直分布を含めた形で流速や汚濁物質濃度 の計測が可能となるモニタリング手法の構築が望まれる. このような要請に対する一つの指針として、超音波ド ップラー流速分布計(ADCP)の適用が考えられる.こ の ADCP は、水中にパルス上の超音波を発射し、その音 波のドップラー効果を利用して多層の流速を計測すると

ともに、浮遊粒子からの反射強度を利用して土砂濃度を 推定することができる機器である.これまでに、この ADCPを用いて、大河川での洪水流調査^{5),6)}や河口域⁷⁾ や内湾⁸⁾での土砂動態調査が行われているものの、本研 究で対象とする都市河川への適用例は皆無である.

本研究では、都市河川における汚濁負荷量の高精度評価のために、都市河川において高解像度超音波ドップラー流速分布計(以下,HR-ADCPと呼ぶ)を河床に設置し、流速やSSの鉛直分布に関する連続計測を実施することを試みた.そこで得られた結果を用いて、洪水時に着目して、都市河川における増水期・減水期の流速・SSの鉛直構造特性のみならず、主流方向SSフラックスや底質の巻上げフラックスについて検討を行う.

2. 現地観測の概要

観測サイトは、富栄養化湖沼として有名な手賀沼西部 へ流入する都市河川である大堀川とした(図-1).この 大堀川下流部(呼塚橋)の低水路内において、図-2に 示すように、河床に埋め込む形で HR-ADCP (RDI, WorkHorse ADCP Sentinel 1200kHz)を設置した.設 置には、この HR-ADCP を木枠で囲い、この木枠を杭に より固定した.なお、底面設置された HR-ADCP 周辺に おいて局所的な洗掘や土砂堆積は確認されなかった.

図-2 HR-ADCPの設置概況

観測期間としては、2003年7月31日~8月6日と9 月19日~29日という2つの期間を選定した.前者の期間中では、8月5日に時間最大雨量73mm、総雨量102mm という降雨イベント(以下,降雨イベントAと呼ぶ)が 生じた.また、後者の期間中の9月20日~22日にかけ て、時間最大雨量7mm、総雨量102mmの降雨に伴って 明確な河川出水(以下,降雨イベントBと呼ぶ)が観測 された.本論文では、この二つの降雨イベント時での観 測データを整理・検討する.

HR-ADCP の計測モードとしては、鉛直分解能 2cm, 層数 150,サンプリング間隔 5 分とし、このときの計測 誤差の標準偏差は 2.42cm/s である.HR-ADCP のセンサ 一面から計測を行う第一層目までの領域(不感帯)の厚 さは 14cm である.また、同時に水位を自記式水位計 (Diver, Eijikelkamp 社製)により計測した.また、降 雨イベント B では、別途、表層水をバケツ採水し、その サンプル水に対して SS や他の水質項目の分析を行った.

3. 観測結果と考察

(1)洪水概況

本研究において現地調査を行った降雨イベントの洪水 概況を説明するために,降雨イベントA及びBにおける ハイエト・ハイドログラフを図-3に示す.ここで雨量

データは、千葉県我孫子市におけるアメダスのデータで ある.また、流量に関しては、HR-ADCPにより得られた 水深平均流速値を同化データとして組み込んで数値シミ ュレーションを行う、という新しい河川流速・流量推定 法⁹⁾に基づいて算出している.まず、降雨イベントAで は、8月5日16時前より雨が降り始め、16時から17時 の間に73mmという記録的な集中豪雨が発生している. 流量に関しては、降雨イベント前では約1.5m³/s であった のが、16時ごろより急激に増加して、17時頃には50m³/s にまで達している.その後、流量は緩やかに減少し、翌6 日3時頃には降雨イベント前の流量に戻っている.一方、 降雨イベントBでは、4つの明確な降雨ピークが見られ、 それに対応して、4つの流量ピークが生じていることが分 かる.本論文では、各降雨ピークに対して、図-3 (b) に示すように、期間①~④と呼ぶこととする.

(2) 流れの鉛直構造

洪水時における流速鉛直構造の基本特性を調べるため に、降雨イベントAにおける主流・横断方向流速の鉛直 分布に関する時間変化を図-4に示す.ここでは、図中 太線で示されている水位変化に合わせて、流速コンター の図化範囲も変えており、図化の関係上、鉛直方向に 10cmの移動平均を施した結果を示している.また、横断 方向流速の正と負の値はそれぞれ右岸、左岸向きを示し

図-4 降雨イベントAにおける流速鉛直分布の時間変化 (8月5日16:00~21:00)

ている. なお, ここでは, ADCP による計測値のうち, 水面下でかつ Percent Good 値(発射した超音波のパルス 数に対する反射してきた超音波のパルス数の割合)が 90%以上の結果のみを図示しており,水面下で空白の部 分は,この基準を満たさなかった部分に相当している.

この図を見ると、記録的な降雨に伴い水位が約1時間 で1.4m も上昇しており,降雨イベントAは極めて非定常 性が強い洪水イベントであったといえる. 主流方向流速 に着目すると、水位ピーク前に流速ピーク(図-4 (a) 中矢印)が現れる、という開水路における典型的な流速 変化10)が生じている.特筆すべきことは、この流速ピー ク時には、表層流速よりも底層流速が大きくなるという 流速の上下逆転現象が生じている、ということである. この流速逆転現象は、他の河川でも観測例がある5).こ の流速ピークの後では、増水期における主流方向流速の コンター線が減水期よりも切り立っており、増水期の流 速分布が減水期よりも相対的に鉛直方向に一様化してい る. 次に, **同図 (b)** に示されている横断方向流速に着目 すると、増水期初期では概ね0であるのに対して、主流 方向流速ピークが現れる時間帯では、負の値、すなわち 左岸向きの流れが顕著となり、最大で-0.1m/s を越えてい る. その後, 増水期後期や減水期では概ね正の値(右岸 向きの流れ)となり, 減水期初期に現れる横断方向流速 のピーク値は約0.3m/s にまで達している. このように, 増水期と減水期において主流方向・横断方向流速の鉛直 構造がダイナミックに変化している様子が, 高解像度 ADCP によりはっきりと捉えられていることが分かる.

同様に、降雨イベントBにおける主流方向流速の鉛直 分布変化を図-5に示す.4つの降雨ピーク毎に水位ピ ークと流速ピークの関係を見ると、降雨イベントAと同 様に、すべての期間において水位ピークよりも早く流速 ピークが現れている.また、増水期における流速コンタ ー線は減水期よりも切り立っており、降雨イベントAと 同じく、降雨イベントBにおいても主流方向流速の鉛直 一様化が増水期において顕著になっていることが分かる. なお、降雨イベントBでは明確には生じていない.

降雨イベントAにおいて見られた流速の上下逆転現象 の形成過程について考察する.主流方向流速と横断方向 流速の関連性に着目すると、上下逆転現象が生じていた 流速ピーク時には、左岸向きの横断方向流速が顕著にな っているのに対して、それ以外の時には、右岸向きの横

降雨イベントBにおける主流方向流速の鉛直分布の時間変化(9月20日12:00~9月22日6:00)

断方向流速が卓越していることが分かる.次に、図-6 に示している ADCP が設置された横断面の状況を見ると, ADCP 自体は最深部である低水路右岸寄りに設置されて おり、また、右岸側の高水敷には植生帯が存在していた. これらのことをまとめると, 流速の上下逆転現象が生じ たときには、植生が繁茂する右岸側高水敷より低速流体 塊が低水路表層部に輸送され、その結果として、表層に おける主流方向流速は減少し、流速の上下逆転現象が生 じたものと推察される. なお, このようにダイナミック に変化する横断方向流速の形成要因としては、河道の平 面形や植生の倒伏状況と関連しているものと考えられる ものの、現時点では不明な点が多く、今後類似した現地 調査を行い検討する予定である.

(3) 水位と流速の関係

洪水流の非定常性と流れの鉛直構造の関連性を見るた めに,降雨イベントAでの表層・底層における主流方向 流速と水位の関係を図-7に示す.ここで、表層及び底 層流速は、各々、水面下 0.14m~0.24m および底面上 0.34 ~0.44mにおける流速の平均値である.また,非定常性を 考慮するために、増水期と減水期を分けて表示している. これらを見ると、表層・底層ともに、増水期の流速が減 水期よりも大きく、図中の矢印で示されているように、 水位-流速関係が時計回りのループとなっている. この ようなループ特性を表層と底層で比べると、底層でのル

図-7 水位と主流方向流速の関係(降雨イベントA)

ープの方が大きく、 増水期と減水期における流速の差が 大きいことが分かる. 類似した傾向は、降雨イベント B においても確認されている. このような水位-流速関係 に対する表層と底層の違いは、Nezuら¹¹⁾の実験結果と一 致しているものの,著者らが行った江戸川での結果⁶⁾と は異なっており、興味深い結果となっている.

また,表層流速の最大値は最大水位よりも約20cm低い 高さで現れるのに対して,底層流速に関しては最大水位

図-8 後方散乱強度 *I* と SS のキャリブレーション結果 (降雨イベントB)

よりも約80cm低い水位で現れている.これらの結果は, 図-4のように,流速の上下逆転現象の発生と密接に関 連しているものと思われる.

(4) SS 及び主流方向 SS フラックスの鉛直分布

次に、HR-ADCPにより計測された後方散乱強度値より、 SS の鉛直分布や主流方向・鉛直方向 SS フラックスを算 定することを試みる.まず、後方散乱強度 I と SS の関係 性を見るために、表層における後方散乱強度と SS の相関 図を図-8に示す.ここでは、表層採水を行い、SS の分 析値を求めた降雨イベント B における結果を表示してい る.これを見ると、両者の関係には多少ばらつきが見ら れるものの、以下のような近似式が得られた.

$$SS = 1.04 * 10^{-4} \exp(0.118I) \tag{1}$$

ここでの単位としては, SS は mg/L,後方散乱強度 I は dB である.この近似式に対する相関係数は 0.82 であり, 後方散乱強度と SS の間には概ね良好な相関性がある.

この式(1)より得られた,降雨イベントB中の期間① におけるSSの鉛直分布を図-9(a)に示す.ここでは, 増水期(9月20日16:00),水位ピーク時(同日17:00), 減水期(同日19:00)の結果が図示されている.これを見 ると,増水期におけるSSは鉛直方向にほぼ一様であり, 若干表層のSS値が底層よりも大きい.その後,水位ピー ク時や減水期には,底層のSSが表層値よりも大きく,底 層に近づくとともに指数関数的にSSが増加している.著 者らが別途行った検討結果¹²⁾によると,この降雨イベン トBにおけるSSの起源としては,水位ピーク時や減水期 では河床堆積物が主であるのに対して、増水期では河床 ではなく路面・屋根面などの流域における堆積物である ことを示唆している.このことより、増水期には河床堆 積物起源ではないウォッシュロード成分が卓越している ために,SSが鉛直一様化したものと推察される.

図-9 SS と主流方向 SS フラックスの鉛直分布 (降雨イベントB,期間①,9月20日)

同図(b)は、同じ降雨イベントBにおける主流方向 SSフラックスの鉛直分布を示す.ここでは、後方散乱強 度より推定されるSSの鉛直分布に対して指数関数近似 し、その近似曲線で表されるSSと主流方向流速の積によ り主流方向SSフラックスを算出している.これより、主 流方向SSフラックスの鉛直構造については、前述してい るSS鉛直分布を反映して、増水期では表層の方が底層よ りも大きいのに対して、水位ピーク時や減水期ではその 逆の傾向となっている.これより、都市河川においてSS や懸濁態水質濃度の負荷量を正確に評価するには、流速 のみならず汚濁物質濃度の鉛直分布特性を考慮すること の重要性が実証的に明らかとなった.

(5) 底質の巻上げフラックス

図-10は、降雨イベントBにおける底質の巻上げフ ラックス P_k と水深平均流速の相関図を示す.ここでは、 巻上げフラックス P_k を算出する際に、局所平衡性の仮定、

図-10 降雨イベントB での底質の巻上げフラックス*P_k* (太線・細線は,降雨イベント前(9月19日)と後(9月22 日)に行われた巻上げ試験(二瓶ら¹³)による結果である)

すなわち,底面上にて巻上げフラックスと沈降フラック スが等しい,という仮定を用いて,指数近似されたSS分 布の底面上での値と土粒子の沈降速度の積として P_k を 与える.また,図中には、巻上げ試験方法¹³⁾を用いて得 られた,降雨イベント前後(9月19,22日)での巻上げ フラックス P_k の結果も図示されている.なお、ここでは、 土砂沈降速度としては、対象地点の河床堆積物に対する 沈降速度(=0.293cm/s)を一定値として与えているが、洪 水中では浮遊土砂の粒径分布は変化することが予想され、 沈降速度の与え方に関しては今後検討を要する.

まず、巻上げ試験による結果に着目すると、降雨イベ ント前(9月19日)における巻上げフラックスは、イベ ント後(9月22日)よりも大きく、河川出水により易浮 遊性堆積物量が減少していることが分かる¹³⁾.一方、 HR-ADCPの結果に関しては、期間①における底質巻上げ フラックスは巻上げ試験の降雨前(9/19)の値に近いのに 対して、その後の期間②~④に関しては、巻上げ試験に よる降雨後(9/22)の結果に近づいていることが分かる. これは、河床に堆積しているへドロ状の易浮遊性堆積物 の大部分が期間①にて河床より巻き上げられ、河川流速 と巻上げフラックスの関係が降雨イベント中に変化した ことを示唆している.このように、HR-ADCPによる計測 は、降雨イベントにより底質の巻上げフラックスが減少 することや、降雨イベント中に底質巻上げフラックスの 流速依存性が変化する様子を捉えることに成功している.

4. 結論

高解像度 ADCP を用いて、洪水時都市河川における流

速・土砂輸送観測を行った. その結果, 流速に関しては, 増水期にて流速の上下逆転現象が生じている等,特徴的 な流速鉛直構造が存在することが示された. また,後方 散乱強度より SS を推定した結果,主流方向 SS フラック スの鉛直構造が増水期と減水期とでは明確に変化してい ることが示された. さらに,底質の巻上げフラックスを 求めたところ,降雨イベント中に巻上げフラックスの流 速依存性が変化する,ということが実証的に明らかとな った. これらの結果より,都市河川における汚濁負荷量 評価の精度向上に対して HR-ADCP が極めて有効である ことが明らかとなった.

謝辞:本論文における現地観測の実施や図面作成に際しては、東京理科大学理工学部土木工学科水理研究室学生 諸氏に多大なる御助力を頂いた.東京都立大学横山勝英 講師には、HR-ADCPの後方散乱強度データに基づくSS の算出に対して有益な助言を頂いた.本研究の一部は、 下水道振興基金研究助成金(研究代表者:二瓶泰雄)と 科学研究費補助金基盤研究(C)(2)(研究代表者:二瓶 泰雄)によるものである.ここに記して謝意を表する.

参考文献

- (社)中部建設協会:絵で見る水文観測,水谷印刷, pp.175-199, 2001.
- 福岡捷二,渡辺明英,高次渉,坂本博紀:浮子による流量 観測精度に水路平面形,横断面形の与える影響評価,水工 学論文集,Vol.46, pp.37-42, 2002.
- Rouse, H.: Modern conception of the mechanics of turbulence, Trans. ASCE, Vol.102, pp.463-543, 1937.
- 4) 吉川秀夫:流砂の水理学,丸善, pp.130-141, 1985.
- 5) 木下良作:河川流量と流れの構造 -ADCP による観測報 告-, pp.1-56, 2002.
- 6) 佐藤慶太、二瓶泰雄、木水啓、飯田裕介:洪水流観測への 高解像度超音波ドップラー流速分布計の適用 ~江戸川を 例にして~、水工学論文集, Vol.48, pp.763-768, 2004.
- 横山勝英.藤田光一:多摩川感潮域の土砂動態に関する研究,水工学論文集, Vol.45, pp.937-942, 2001.
- 川西澄,内田卓志,松山幸彦,余越正一郎:浅海域における ADCP を用いた濁度分布の観測,沿岸海洋研究, Vol.35, No.2, pp.203-211, 1998.
- 三瓶泰雄,木水啓:新しいデータ同化手法に基づく河川流 速・流量推定法の提案,土木学会論文集,2004(投稿予定).
- 10) 禰津家久, 冨永晃宏:水理学, 朝倉書店, pp.246-266, 2000.
- Nezu, I., Kadota, A. and Nakagawa, H.: Turbulent structure in unsteady depth-varying open-channel flows, *J. Hydraulic Eng.*, Vol.123, pp.752-763, 1997
- 12) 今野篤, 二瓶泰雄, 大竹野歩, 水口陽介:複数の都市河川 における降雨時水質環境の比較解析,水工学論文集, Vol.49, 2005 (投稿中).
- 二瓶泰雄、山崎裕介、西村司、丸山透:都市河川における 易浮遊性堆積物環境の検討、水工学論文集、Vol.48、 pp.1447-1452, 2004.

(2004.9.30 受付)