現地観測に基づくマングローブ河口域における sill 形状と海水交換特性の検討

二瓶泰雄^{*} • 中村武志^{**} • 綱島康雄^{**}

沖縄県石垣島吹通川マングローブ水域を対象として、河口域における sill 地盤高さに関する長期モニタリングと海水交換特性の基礎と なる河口部での流量調査を行った.creek内の水位データを用いて sill 地盤高さを長期連続的にモニタリングした結果, sill 地盤高さが数 日で 10cm 程度急上昇するという現象が生じていること、それに対して台風接近に伴う高波浪来襲や大規模な河川出水が大きな影響を及 ぼしていることが明らかとなった.また、河口流量と潮位差の関係は、sill 地盤高さの考慮の有無により相関関係が大きく異なっており、 sill 地盤高さが河口流量に対して多大な影響を及ぼしていることが示された.

1. はじめに

マングローブ林の中で最も多く見られる R型マンガル の地形的特徴としては, 蛇行・分岐部を有する河道部 (creek) とその川岸沿いの氾濫原上に群落が形成されて いる樹林帯 (swamp) が存在するとともに、マングロー ブ域と海域を接続する河口域では浅瀬上の sill が形成さ れている,ということが挙げられる(Lugo & Snedaker, 1974). これらの地形的特徴は,海水流動特性や生物活動 と相互作用を及ぼし合うため,マングローブ生態系を構 成する重要な一要素となっている(松田, 1997). このよ うなことから、マングローブ水域及びその周辺海域にお ける地形変動特性をモニタリングし、それと密接に関連 している海水流動特性との関係性を具体的に明らかにす ることは必要不可欠である.上述した地形的特徴のうち, sill の地形特性は、周辺海域-マングローブ水域間にお ける海水・物質交換特性に多大な影響を及ぼしているこ とから (Wolanski ら, 1992), sill 地盤高さの時空間変動 特性やそれと海水交換特性との関係性を明らかにするこ とは極めて重要となる.

そこで本研究では、マングローブ河口域における地形 変動特性や海水交換特性を明らかにするために、典型的 なR型マンガルである沖縄県石垣島吹通川マングローブ 水域を対象とした現地観測を行うことを試みた.ここで は、1)河口域に位置する sill 地盤高さに関する長期モ ニタリングと、2)河口部での流量観測、という2種類 の現地観測を実施したので、以下にその結果を示す.

2. 現地観測の概要

本観測を行う吹通川マングローブ水域は、その面積が 18ha と小さく、swampの面積が creek の面積の 10 倍程度 である、という特徴を有している.このマングローブ水 域の河口前面域に存在する sill は干潮時に干出するため、 干潮時にはマングローブ水域と周辺海域はほぼ分断され、

*	正会員	博(工)	東京理科大学講師 理工学部土木工学科
**	学生員	学(工)	東京理科大学大学院 理工学研究科土木工
			学専攻修士課程
***	非会員	修(工)	㈱ジェイアール東日本情報システム

図-1 吹通川マングローブ域と観測対象範囲

図-2 sill 周辺の様子

creek における水位変動は外海と比べて大きく歪んでい ることが指摘されている(二瓶ら, 2002). このマングロ ーブ河口域を対象として行われた, 1) sill 地盤高さの 長期モニタリングと2)河口流量観測, という2種類の 現地観測の概要を以下に示す.

 1)の観測としては、まず、sill 周辺の地形の空間分布を把握するために、sill を含めた河口前面域における 水準測量及び深浅測量を3回(2002年6月30日、9月

図-3 干潮時における creek と reef の水位分布に関 する模式図

15,18日,12月3,5日) 実施した. 測量対象範囲は, **図-1**のように、マングローブ域と海域の境界部に位置 している吹通橋 (Stn.C1) より沖側の点線で囲われた領 域としている. 図-2は、吹通橋より沖側を撮影した写 真であり, 冠水時には水没していた部分が干潮時には干 出しており、浅瀬が形成されている様子がうかがえる. 次に, sill 地盤高さの時間変動特性を連続的にモニタリ ングする際には、上述した測量を時間的に密に行うこと は困難である. そこで, sill 地盤高さを長期連続的に計 測するために、ここでは、creek内に設置された水位デー タを用いることとする. すなわち, 吹通川では, 図-3 に示すように、浅瀬状の sill の存在により干潮時には外 海と分断されて creek 内の水位がほぼ一定値となる.こ の特徴を利用して、干潮時における creek 内の水位(以 下,干潮時水位と呼ぶ)の経時変化により, sill 地盤高 さの時間変動特性を間接的に捉えることにする. このた めに、自記式水位計(Diver, Eijkelkamp 社製)を creek 内(Stn.C1, 図-1)において 2002 年 6 月 29 日から現 在(2003年5月)まで連続的に設置している.本論文で は、2002年6月29日~12月2日までの観測結果を解析 対象範囲とする.

2)の流量観測に関しては、まず、河口部(Stn.C1) において、2002年9月24日から12月2日にわたり自記 式小型流速計(Compact-EM,アレック電子㈱)をブイ係 留し、長期間にわたる表層流速観測を実施した.次に、 二瓶ら(2003)と同様に、表層流速観測値と浅水流モデ ルを用いた数値計算を行い、Stn.C1を含む横断面内の水 深平均流速分布を計算し河口流量を算定している.また、 この浅水流計算結果の妥当性を検証するために、Stn.C1 を含む横断面内における流速調査を2002年12月4、5 日において実施した.ここでは、断面内における流速の 横断・鉛直分布を計測するために、底層では2箇所、表 層では最大7箇所において流速計測を行った.底層流速 に関しては、自記式流速計を底面に固定して計測した. 一方、表層流速については、1台の自記式流速計を移動 させ、一箇所につき1分程度係留して計測を行った.

3. sill 地盤高さの時空間変動特性

(1) 干潮時水位の時間変動特性

まず, creek 内における水位変動の基本特性を見るため に, creek 内(Stn.1)と外海(石垣港)における水位変 動の一例を図—4に示す.ここでは,水位の基準面を石 垣港平均海面としており,以下,この基準面を用いて水 位や地盤高さを求めることとする.これを見ると,満潮 時では両者の水位は概ね一致しているものの,干潮時に はこの両者に明確な差が生じており, creek 内の水位変動 が外海と比べて大きく歪み,そこでの水位値はほぼ一定 となっていることが確認できる.この結果は,上述した ように,干潮時には sill の一部が冠出し, creek と reef がほぼ分断されるためである.

このような干潮時水位を、ここでは、図-4中の×印 に示すようにほぼ一定となっている水位値とし、それを 潮汐毎に算出した結果を図-5(a)に示す.これを見 てみると、観測開始直後の6月30日頃における干潮時水 位は-25cm程度であったものの、約5ヵ月後の12月1日 では干潮時水位は約-15cmまで上昇していることが分か る.その間には、短い周期の変化を繰り返すとともに、2、 3日で約10cm程度の急上昇が見られる2回のイベント (①2002年9月7日頃、②10月30日頃)が生じている.

また、急上昇イベント②の後では、干潮時水位が徐々に 減少し、急上昇イベント前の干潮時水位にほぼ戻ってい る.このような干潮時水位変化の要因を検討するために、 河口地形と密接に関連している波浪、河川出水、潮汐の 影響として、有義波高(石垣港)、日雨量(石垣市伊原間) と月齢の経時変化を図-5(b)に示す.ここでは、特 に、2回の干潮時水位の急上昇イベントに着目すると、 まず、イベント①では、有義波高が最大で約3mまで達 する高波浪が来襲していることが分かる.これは、台風 0216号が接近したためであり、高波浪に起因して sill 上 での土砂堆積が生じたものと推察される.一方、イベン ト②では、日雨量が200mm弱の集中豪雨が生じている ことが分かる.これより、河川からの出水に伴って陸域 からの土砂供給が顕著になったことが示唆された.以上 のように、干潮時水位は、台風接近に伴う高波浪来襲や

大規模な河川出水により,間欠的に2,3日で約10cm急 上昇していることが明らかとなった.

(2) 地盤高さの空間分布

河口前面域の地形分布に関する基本的な空間変動特性を 見るために, 図—1中の Line I - I ′ とⅡ-Ⅱ′ における断 面地形図を図—6に示す. 図中の横軸は, 各ラインにおけ る最も西側の地点からの水平距離である. また, 2002 年 6 月においては, Line Ⅱ-Ⅱ′ 上における測量調査を行ってい ないため, 同図(b) には 2002 年 9, 12 月のみの結果が表

図-7 河口前面域における地盤高さコンター (2002 年 9 月)

示されている.まず,吹通橋直下の Line I - I' に着目する と,6月に見られた深掘れ部は,9月の時点では埋め戻さ れているなど,3ヶ月の間に 50cm 以上の地盤高さ変化が生 じていることが分かる.また,6月の結果と比べて,9月 や12月の時点では,全体的に地盤高さは高くなるととも に,その地盤高さの凹凸がならされている様子がうかがえ る.一方,Line I - I' よりも沖側の Line II - II' では,Line I - I' と比べて地形変化量は少ないものの,ライン上西側 では侵食傾向,中央部では堆積傾向となっている.また, このライン上における澪筋の幅は,9月よりも12月の時点

(a) 9月と6月

(b) 12 月と9月図-8 砂面変化量Δzの空間コンター

の方が広くなっていることが分かる.

面的な地形分布を把握するために,水準・深浅測量によ り得られた河口前面域における地盤高さの空間コンター を図-7に示す.ここでは、2002年9月における地盤高さ データについて表示している.これを見ると、地盤高さの コンター線は、河口部 (Stn.C1) における creek の流軸方向 (南東~北西方向)と直角な南西~北東方向に対して,概 ね平行になっていることが分かる. 図中点線で囲まれた部 分に着目すると、図-2(b)や図-6(b)において見ら れたように,河口前面域における澪筋は,領域中央部では なくやや西側に位置して沖側に伸びている様子がうかが える.このような澪筋の存在により, sill 上では, 図-3 に示すような岸沖方向の地形変化のみならず、沿岸方向の 地形変化も有意な大きさで存在している.また, 吹通橋 (Stn.C1) より半径 150~200 m の範囲における地盤高さは, 概ね-40cm より高くなっており、この領域内では、澪筋を 除いた大部分が干潮時に冠出する.

2002 年 6, 9, 12 月における地盤高さの空間分布を比較 するために, 図-7 中の点線の領域における砂面変化量 Δz の空間分布を図-8 に示す. ここでの砂面変化量 Δz として,

図-9 水深平均流速の横断分布に関する観測値と計算値の比較(下げ潮時,12月4日8:06~8:13)

9月の地盤高さから6月の値を引いたものを同図(a)に, 同様に12月と9月における地盤高さの差を同図(b)にそ れぞれ示す.なお、 $\Delta z > 0$ は堆積傾向、 $\Delta z < 0$ は侵食傾向と なっている.まず,9月と6月におけるΔzを見ると,この 領域中央部で侵食傾向となっているものの、全体的には堆 積傾向となっている.このような河口前面域における堆積 傾向は、図-5(a)に示した 6月から 9月にかけて干潮 時水位が上昇した結果と定性的に一致しているものと考 えられる.一方,12月と9月におけるΔzの空間分布に関 しては,領域西側が侵食傾向となっており,中央部及び東 側では堆積傾向となっているものの,全体的には堆積量と 侵食量は同程度となっている.この結果に関しても,9月 中旬と 12 月における干潮時水位が同程度であった(図-5(a))という結果と定性的に一致している.以上のよう に, 干潮時水位の増減と河口前面域における堆積・侵食傾 向に関する定性的な関係は概ね一致していることが明ら かとなった.なお、両者の定量的な関係については、現状 の観測データだけで議論することには限界があるため、今 後,より詳細な検討を行っていく予定である.

4. 河口流量観測結果と考察

(1) 流量算定方法の妥当性の検証

河口部における流量算定結果を示す前に,流量算出時 に適用している浅水流モデルに基づく数値シミュレーシ ョン結果に関する妥当性を検証する. 図—9は Stn.C1 を 含む河口断面内における断面直交方向の水深平均流速の 観測値と計算結果を示している.ここでは,一例として, 下げ潮時(2002年12月4日8:06~8:13am)における結 果を表示している.これを見ると,多少のばらつきは見 られるものの,両者は概ね一致していることが見て取れ る.これより,流量を算定する際に用いている浅水流モ デルの基本的な妥当性が検証されたものと考えられる.

(2)河口流量と潮位差の関係

このような浅水流モデルを用いて得られた河口流量と

図-10 潮位差△*H*と総河口流量∑*Q*の関係(2002/9/24~12/2)

sill の地盤高さとの関連性を調べるために、総河口流量 ΣQ と潮位差 ΔH の関係を $\mathbf{2}$ —**10**に示す.ここで潮位 差△Hとしては, sillの影響のない外海と, sill影響が含 まれているマングローブ河口部について求めた結果であ る. また, 流量観測が行われた全期間を対象として, 上 げ潮時と下げ潮時各々における流量積算値を総河口流量 として与えている. なお, 図中には, 明確な河川出水が 確認された流量データを除外している.また,図中には, 潮位差と総河口流量に関する近似曲線も合わせて示して いる.これらを見ると,潮位差と総河口流量の相関性は, 外海の場合には不明瞭であるのに対して, sill の地盤高 さ変化が反映されているマングローブ河口部では高くな る、という傾向が上げ潮時、下げ潮時共に見られる.こ れより, sill の地盤高さが河口部での海水交換特性に大 きな影響を与えているのみならず、河口流量予測を行う 上で sill 地盤高さの影響を正確に取り込むことの重要性 が示唆された.

5. 結論

沖縄県石垣島吹通川マングローブ水域を対象として,河 口域における sill の地形変動と河口流量に関する現地観測 を実施することを試みた.creek 内の水位データから得られ る干潮時水位を用いて,sill 地盤高さの時間変動特性を長 期連続モニタリングしたところ,干潮時水位が数日で約 10cm 急上昇するというイベントを捉えることに成功した. このような干潮時水位の急上昇を引き起こす要因として は、台風接近に伴う高波浪来襲や大規模な河川出水による ものであることが示された.また,河口部における流量と 潮位差の関係を調べたところ,sill 地盤高さの考慮の有無 により,河口流量と潮位差の相関性に大きな差が生じてい た.それより,河口流量に対して,sill 地盤高さが大きな 影響を与えていることが示唆された.

謝辞:本研究における現地観測の実施や観測データの整 理を行う際には,東京理科大学理工学部土木工学科西村 司教授及び大学院生佐藤慶太氏,山崎裕介氏には大変お 世話になった.ここに記して謝意を表する.

参考文献

- 二瓶泰雄・青木康哲・綱島康雄・佐藤慶太・西村司・灘岡和夫
 (2002):多点連続観測に基づくマングローブ・エスチェア
 リーにおける流れと物理輸送特性,海岸工学論文集, Vol.49,
 No.2, pp.1201-1205.
- 二瓶泰雄・大竹野歩・小久保武(2003):降雨時における手賀沼 流入河川の水質負荷特性,土木学会論文集(投稿中).
- 松田義弘(1997):マングローブ水域の物理過程と環境形成 自然の保護と利用の基盤-, 黒船出版, pp.1-103.
- Lugo, A. E. and S. C. Snedaker (1974): The ecology of mangroves, Annual Review of Ecology and Systematics, Vol.5, pp.39-64.
- Wolanski, E., Y. Mazda and P. Ridd (1992): Mangrove hydrodynamics in Tropical mangrove ecosystems (eds. Robertson, A. I. and D. M. Alongi), American Geophysical Union, pp.43-62.