マングローブ河道部-氾濫原間の 運動量・濁質輸送特性に関する検討

STUDY ON MOMENTUM AND SEDIMENT TRANSPORTS BETWEEN CREEK AND SWAMP IN A MANGROVE ESTUARY

佐藤慶太¹・二瓶泰雄²・田口富之³・綱島康雄⁴・中村武志⁵・今野篤⁵・西村司⁶ Keita SATO, Yasuo NIHEI, Tomiyuki TAGUCHI, Yasuo TSUNASHIMA, Takeshi NAKAMURA, Atsushi KONNO and Tsukasa NISHIMURA

¹学生員 修士(工) 東京理科大学大学院 理工学研究科土木工学専攻博士後期課程(〒278-8510 千葉県野田市山崎 2641)
²正会員 博士(工) 東京理科大学講師 理工学部土木工学科(同上)
³非会員 学士(工) 東京理科大学 理工学部土木工学科 元学部生

⁴非会員 修士(工) (株)ジェイアール東日本情報システム(〒151-0053 東京都渋谷区代々木 2-2-2)

5学生員 学士(工) 東京理科大学大学院 理工学研究科土木工学専攻修士課程 6正会員 工博 東京理科大学教授 理工学部土木工学科

To understand momentum and sediment transports between creek and swamp in a mangrove area, we have conducted field measurements at Fukido River estuary section in the Ishigaki Island, Okinawa, Japan. A 3D current computation in the mangrove estuary has also been performed with a new multi-nesting procedure recently developed by the authors. The observed results indicate that the temporal and spatial variations of the momentum and sediment transports between the creek and swamp appear appreciably mainly due to horizontal current patterns in the mangrove swamp. The computational results for the 3D flow structure around the creek give qualitatively agreements with the observed results, indicating the fundamental performance of the present numerical models.

Key Words: Mangrove estuary, creek, momentum transport, sediment transport, nesting procedure

1. はじめに

河道部(creek)とヒルギ類等の塩性植物が密生する氾 濫原 (swamp) で構成されるマングローブ水域では, creek を介して、潮汐作用に伴って swamp と周辺海域との間で 海水・物質交換が行われており、 ここでは豊かな生態系が 形成されている1). このような海水・物質交換特性を理解 するためには、そのベースとなる creek と swamp 間におけ る物質交換過程を把握することが重要となる. このマング ローブ河道部は、大きな蛇行部や分岐部等で特徴付けられ ている複雑な平面形状を有し,その両岸には特異な形状を したマングローブ植物が繁茂する広大な氾濫原が存在す る, ということが一般的である. そのため, マングローブ 水域での河道部一氾濫原間の運動量・物質輸送過程に関し ては,これまでの河川工学の知見をそのまま準用できない ものと推察される. また, マングローブ河道部及びその周 辺における水理環境に関する既存の知見はそれほど多く $t_{\rm CV}^{(2)} \sim^{5)}$.

このような背景から,著者らは沖縄県石垣島吹通川マ ングローブ水域を対象とした現地観測を実施し, creek 周 辺における三次元流動特性や乱流構造に関する基礎的な 検討を行っている(二瓶ら⁶⁾,以下前報と呼ぶ). その観 測結果により,時間的にダイナミックに変化する creek 内における三次元流動構造や creek 周辺の流速変動特性 の形成要因などについて検討した. しかしながら,前報 では,乱流観測時における測定器の制約により,時間的・ 場所的に十分な流速データを得ることができておらず, その上,濁質などを対象とした物質輸送過程に関する調 査も行っていない.

そこで本研究では、creek-swamp間における運動量・ 濁質輸送過程を検討するために、同じ吹通川マングロー ブ水域を対象として、現地観測と数値シミュレーション を行うことを試みた.ここでは、現地観測結果に基づい て、creek-swamp境界部における乱流構造や運動量・濁 質フラックスの時空間的変化について検討する.次に、 著者らが別途提案している新しいネスティング手法⁷¹に 基づく流動計算を行い、creek周辺における三次元流動構 造特性を調べる.

2. 現地観測概要

図-1 吹通川マングローブ水域と観測点配置図

現地調査は、前報と同様に、吹通川マングローブ水域 中央部に位置する Sm.A(図-1)周辺を対象として、① 有線式測器を用いた乱流輸送観測、②デジタルビデオカ メラによる水表面流速観測、という二種類から構成され る. 観測期間は両観測とも2002年9月17~20日とし、 本論文では、上げ潮時(19日16:06~18:50)と下げ潮時

(20日6:36~10:02)の結果を示す.①の観測では、室 内用有線式電磁流速計3台(VM-201H,(㈱KENEK 製)と 光学式濁度計2台(OBS-3, D&A 社製)を、図ー1に示す ように、creekの右岸・左岸側におけるcreek-swamp境 界部の底面上10cmに設置した.ここではサンプリング 周波数を10Hzとし、それらの結果をデータロガー (NR1000,(㈱KEYENCE 製)にて記録した.これらの測器 のうち、右岸側に設置した濁度計は故障したため、観測 値は得られていない.前報では、連続的な流速測定を最 大で20分しか行えなかったものの、本観測では、上記の 時間全て計測している.なお、本論文では、図ー1に示 すように、creek主流、横断方向をそれぞれx、y方向と し、各方向流速成分をu、vとする.また、現地で採取 された底質を用いたキャリブレーション結果に基づいて、 濁度をSSに変換しており、ここではSSをcとして表す.

②の観測では, swamp 右岸側にデジタルビデオカメラ

(DCR-TRV9000, SONY(㈱製) を取り付け(図-1), creek 水表面を流れるトレーサー(Vフォーム,(㈱東京パ ック製)の軌跡をラグランジュ的に追跡することにより, creek 内の水表面流速ベクトルを算出した.このVフォ ームは,水中投入後しばらくして溶解する緩衝材であり, 実河川における水表面流速計測用トレーサーとして用い られている⁸⁾.幾何補正に際しては,あらかじめ水平位 置を測定した標定基準点を撮影範囲内に6点設け,2次

射影変換式⁹⁾ を適用している.撮影画像の解析対象範囲 としては、**図ー1**に示すように, creek 主流方向 1.1m, 横断方向 7.0m の矩形領域とする.

3. 観測結果と考察

(1) 流速·SS の時間変動特性

図-2は、creek 両岸側における主流・横断方向流速の 時系列変化を示す.ここでは、前報と同様に、流速変動 を周期3分以上の変動成分(長周期成分,添え字t)とそ れ以下の変動成分(短周期成分,添え字t)とそ れ以下の変動成分(短周期成分,添え字t)に分離した 形で表記している.なお、短周期成分に関しては、紙面 の都合上、右岸側における creek 主流方向成分u'のみを 図示している.また、図中には、石垣港平均海面を基準 面とする水位変動の観測値も表示している.これらを見 ると、creek 主流方向の長周期成分u_tに関しては、上げ 潮時では左岸側の方が右岸側よりも大きく、下げ潮時で はその逆の傾向が見られる.また、セイシュに相当する

図-4 流速変動のスペクトル解析結果

周期10分程度の流速変動が見られており,その様子は上 げ潮時の方が明確である.一方, creek 横断方向の長周期 成分v, については、上げ潮時では、右岸側ではほぼ0と なっているのに対して、左岸側では負、すなわち左岸側 へ向かう方向の流れが発生している.また、下げ潮時で は、両岸ともに右岸側へ向かう方向の流れが生じており、 その様子は左岸側の方が顕著となっている.このマング ローブ水域では、上げ潮時では、河口部から creek を介 して swamp 奥部へ向かう流れが、下げ潮時ではその逆の 傾向が見られているため、上述した横断方向流速が形成 されたものと考えられる.また、両岸での creek 主流方 向の流速差は、creek の曲がり形状・合流部などの影響と ともに、このような横断方向流速に伴って creek – swamp 間での流入・流出が顕著に起こっている結果を反映して いるものと考えられる.

流速変動の短周期成分に着目すると、その変動振幅は 明確な時間変化をしており、creek 主流方向の長周期成分 とともに大きくなっているように見受けられる.また、 上げ潮時と下げ潮時における結果を比較すると、下げ潮 時における変動振幅の大きさは、上げ潮時の結果よりも 顕著になっていることがうかがえる.これらの短周期成 分の時空間的変化に関しては、次節以降にて詳述する.

次に、上げ潮時・下げ潮時の左岸側における SS 変動 の観測値を図-3に示す.まず、上げ潮時では、前半に

図-5 creek 主流方向流速成分 u に対する wavelet 解析結果

SS ピークが見られ最大で 20mg/l を越えており、その後 は漸減傾向となっている.一方、下げ潮時では、時間経 過とともに徐々に上昇しており、後半に SS ピークが生 じている.また、短周期成分に相当する SS 変動自体は、 全体的には大きくないことがうかがえる.

(2) 流速変動の周波数依存性

流速変動データの周波数依存性に関する基本特性を調 べるために、上げ潮時と下げ潮時各々における流速変動 のスペクトル解析結果を図ー4に示す. 図中には、両岸 側における creek 主流・横断方向の結果が示されており、 図化の関係上, 10⁻²Hz 以上の高周波数域に関しては移動 平均している. これらを見ると、まず、図中矢印に示さ れているように、セイシュに相当する約10分、17分、 27 分周期の変動ピークが現れている. この結果は, 既存 の研究^{6), 10)}とは完全に一致しておらず, また, ここで は観測データが不十分なため、この水域におけるセイシ ュについて今後より詳細に検討する必要がある.次に, 短周期成分に着目すると、10⁻¹Hz よりも高周波数域では コルモゴロフの-5/3 乗則が現れており、乱流状態となっ ていることが分かる.この短周期成分を右岸側と左岸側 とで比較すると、上げ潮時では左岸側の方が、下げ潮時 では右岸側の方が、やや大きくなっている. また、主流 方向と横断方向のスペクトル解析結果について比較する と、長周期成分に関しては creek 主流方向のスペクトル 密度が大きいものの、乱流状態となっている高周波数域 ではほぼ同程度となっている.

より詳細に検討するために, creek 主流方向の流速変動

に対する wavelet 解析結果を図-5に示す. ここでは, 流速データの前後にダミーデータを付加することなく解 析したため,取得データよりも解析期間が短くなってい る.周期3分以下の短周期成分に着目すると,周期100s 前後において,流速変動のパワーが大きくなっている. また,スペクトル解析結果と同様に,上げ潮時には左岸 側が,下げ潮時には右岸側のパワーがそれぞれ相対的に 大きくなっていることが分かる. さらに詳細に見ると, これらの短周期成分は連続的に大きくなっているわけで はなく,むしろ間欠的に増加・減少を繰り返している.

(3) creek 両岸における乱流構造の比較

乱流構造の時間的・場所的な変化を調べるために,流 速データの短周期成分を10分毎に分割し,そのデータに 対してレイノルズ応力 – pu'v'を算出した結果を図ー6 に示す.これを見ると,上げ潮時には左岸側,下げ潮時 には右岸側のレイノルズ応力がそれぞれ顕著となってい ることが分かる.このレイノルズ応力は,creek-swamp 境界部付近における流速差に伴う乱流輸送過程により主 として形成されるため,creek-swamp間における乱流輸 送特性が creek 両岸側で異なり,さらにその大小関係が 上げ潮時と下げ潮時とで異なることが明らかとなった.

このような乱流構造の場所的な違いの要因を調べるために、ここでは、creek 水表面流速分布に注目する. 図-7はデジタルビデオカメラ観測により得られた creek 内の水表面流速分布を示す.ここでは、下げ潮時(20日9:16~17)の結果について、creek 横断方向に 50cm 間隔で平均化したものを図示している.これを見ると、流速ピーク位置は、creek 中央部よりもやや右岸側寄りに位置している.また、creek 両岸における速度勾配を比べると、左岸側ではほぼ0となっているのに対して、右岸側では大きな速度勾配が形成されていることが分かる.これは、

図-2(b), (c)に示したように、ここでは creek 右岸側 へ向かう横断方向流速が形成されているため、主流方向 流速のピーク位置が右岸側寄りに形成され、さらに、 creek 両岸における速度勾配の大きさの違いが生じるも のと考えられる.これらの結果と図-6に示すレイノル ズ応力の結果を比較すると、下げ潮時では、レイノルズ 応力の小さい左岸側では creek 水表面流速の速度勾配は 小さく、レイノルズ応力の大きい右岸側では速度勾配は 大きくなっており、両者は明確な対応関係があることが 分かる.また、上げ潮時に関しても類似した関係が確認 されている.

これより、creek 両岸における乱流構造の違いは、creek 内の流速分布特性と密接に関係しており、それに対して、 creek 横断方向流速を介して、マングローブ水域での大局 的な平面流動パターンが大きな影響を及ぼしているもの

図-6 creek 両岸におけるレイノルズ応力-pu'v'の比較

図-7 creek 内の水表面流速分布 (9/20 9:16~9:17)

と考えられる. なお, このレイノルズ応力に関する観測 結果は, 著者らが別途行っているネスティング計算法に 基づく高解像度流動シミュレーション結果¹¹⁾と逆の傾 向となっており, それに関しては今後の検討課題とする.

(4) creek-swamp 間の運動量・濁質輸送特性

creek-swamp 間における運動量・濁質輸送特性を検討 するために、成分別に運動量・SS フラックスを算出し、 その結果を乱流統計量の時と同様に 10 分毎に平均化し た. そこで得られた結果のうち, creek 両岸での運動量 フラックスと左岸側の SS フラックスの長周期成分を図 -8に示す.まず、運動量フラックスに関しては、上げ 潮時では、左岸側の運動量フラックスが右岸側の結果よ りも明確に大きいものの、下げ潮時では、両者はほぼ同 程度であることが確認される.これは、図-2に示した creek 主流・横断方向流速の傾向と対応している. 次に, SS フラックスは、概ね、同地点での運動量フラックス と同様に時間変化しているものの、そのピーク時刻に関 しては、上げ潮時では SS フラックスの方が、下げ潮時 では運動量フラックスの方が、それぞれ早く現れている ことが分かる. これは, SS 自体のピークが, 図-3に示 したように、上げ潮時では前半に、下げ潮時では後半に 現れるためである. また, 上げ潮時と下げ潮時のピーク 時の結果を比べると、下げ潮時の SS フラックスが上げ 潮時よりも大きくなっていることが分かる. このような 違いは creek 内の濁質環境に大きな影響を及ぼすものと 推察される.以上のような creek – swamp 間における運動 量・SS フラックスは、creek 横断方向流速と直接的に関

図-9 短周期・長周期成分の運動量フラックス比 $\overline{u'v'}/\overline{u_tv_t}$ の時間変化

連していることから、それに多大な影響を及ぼすマング ローブ水域の平面流動パターンが、ここでの運動量・濁 質輸送過程と密接に関連しているものと考えられる.

さらに、運動量フラックスにおける長周期成分と短周 期成分の大きさを比較するために、短周期成分と長周期 成分の比*u'v'/u,v,*に関する時系列変化を図-9に示す. これを見ると、上げ潮時については、右岸側の比の絶対 値は左岸側よりも大きく、10%を越える場合も存在して おり、図-6における結果と異なっている.これは、図 -8に示したように、右岸側における長周期成分の運動 量フラックスがほぼ0となる時間帯があるためである. 一方、下げ潮時に関しては、右岸側の結果は全般的に5% 程度であり、左岸側よりも大きくなっており、図-6に 示したレイノルズ応力の結果と一致している.このよう に、短周期成分の運動量フラックスは、長周期成分の5 ~10%程度であり、また、その大きさが creek の両岸で 明確な違いがあることが明らかとなった.

4. creek 周辺の三次元流動シミュレーション

(1)計算方法及び計算条件

creek-swamp 間の物質輸送過程と密接に関連すると 考えられる creek 内の三次元流動構造を把握するために、

表-1 主な計算諸条件

	領域サイズ	格子数	格子幅
Grid1	704×652m	176×163	4.0m
Grid2	148×104m	148×104	1.0m
Grid3	11×11m	44×44×10	0.25m

Stn.A 周辺での三次元流動計算を試みる. そこでは,**3**. で述べたように, creek 内の流動構造がマングローブ水域 における大局的な流況特性の影響を大きく受けることか ら,ネスティング計算法を導入することにより, swamp 内の大局的な流況を反映しつつ,効率的に creek 周辺に おける高解像度流動計算を実施する. ここでは,ネステ ィング計算法として,開境界条件処理を適切に行うこと が可能な新しい多重ネスティング計算法を用いる⁷⁾.

計算領域としては、図-10に示すように、3 つの領 域が設定されている.ここでは、マングローブ水域全域 (Grid1)と同水域中央部(Grid2)の範囲は、二瓶ら¹¹⁾ と同じとし、Grid3は、現地観測を行ったStn.A 周辺域と した.また、計算効率性を考慮して、Grid1と2に関し ては平面二次元計算を実施し、Grid3に関してのみ三次 元計算を実施した.同図中に示されている地盤高さコン ターは、肥後ら¹⁰⁾における地形図と著者らが別途計測 した結果を用いて作成されている.計算条件の詳細を表 -1に示す.計算期間は、上述した観測期間を対象とす る.外力条件については、この期間中に河川出水が見ら

図-12 断面 I-I'における二次流構造と東西方向流速 コンター(Grid3,上げ潮時,9/1918:10)

れなかったため、潮汐のみを考慮し、Gridlの北側境界 部に位置する河口部にて水位変動の観測値を与えた.

(2)計算結果

まず, creek 内流速の時間変化について計算結果と観測 結果を比較したところ、格子解像度の向上とともに、計 算結果は観測値とより一致することが確認された. ここ では、紙面の都合上、Grid3 における計算結果のみを記 述する. 図-11は, Grid3 における, 上げ潮時 (9/19 18:10) での鉛直平均流速ベクトルを示している. 図中の 点線は creek-swamp 境界部を表示している. これを見る と、観測結果と同様に、creek 左岸側の流速が全体的には 右岸側よりも大きくなっている. このような場合におけ る creek 断面内における三次元流動構造を調べるために, 図-11に示される断面 I-I'における二次流構造と 東西方向流速のコンターを図ー12に示す. これを見る と、表層ではswamp 左岸側へ向かう流れ、底層ではその 逆向きの流れとなっており、図中半時計回りの二次流構 造が明確に形成されていることが分かる. また, creek 主 流方向に相当する東西方向の流速分布に関しては、creek 左岸側ではコンター間隔が密であり、また、流速分布が 鉛直方向に一様化している. これらの結果は、前報にお いて示された観測結果と定性的に一致しており、本ネス ティング計算法の基本的な有効性が確認された.

5. おわりに

creek-swamp境界部における乱流構造や運動量・物質 輸送特性を把握するために,沖縄県石垣島吹通川マング ローブ水域を対象とした現地観測及び数値シミュレーシ ョンを実施した.その結果,creek-swamp境界部での乱 流構造特性や運動量・濁質フラックスは,時間的・場 所的に大きく変化していることが示された.そのような 時空間的な変化に対しては,creek主流・横断方向流速を 介して,マングローブ水域における広域的な平面流動特 性が大きな影響を与えていることが示唆された.また, 新しいネスティング計算法に基づくcreek周辺の三 次元流動計算を実施し,creek断面内における二次 流構造が明確に形成されていることが示された.

参考文献

- 中村武久、中須賀常雄:マングローブ入門 海に生える緑の森,めこん、pp.1-234、1998.
- Wolanski, E., Mazda, Y. and Ridd, P.: Mangrove hydrodynamics in Tropical mangrove ecosystems (eds. Robertson, A. I. and Alongi, D. M.), *American Geophysical Union*, pp.43-62, 1992.
- 3) 松田義弘:マングローブ水域の物理過程と環境形成 自 然の保護と利用の基盤-, 黒船出版, pp.1-41, 1997.
- Wolanski, E., Mazda, Y., Furukawa, K., Ridd, P., Kitheka, J., Spagnol, S. and Stieglitz, T.: Water circulation in mangroves, and its implications for biodiversity (ed. Wolanski, E.), *CRC Press*, pp.53-76, 2001.
- 5) 二瓶泰雄、青木康哲、綱島康雄、佐藤慶太、西村司、灘岡 和夫:多点連続観測に基づくマングローブ・エスチュアリ ーにおける流れと物質輸送特性、海岸工学論文集, Vol.49, No.2, pp.1201-1205, 2002.
- 6) 二瓶泰雄,横井淳一,青木康哲,綱島康雄,佐藤慶太,灘 岡和夫:マングローブ河道部周辺における三次元流動構造 と乱流特性に関する現地観測,海岸工学論文集,Vol.49, No.2, pp.1196-1200, 2002.
- 7) 二瓶泰雄、佐藤慶太、灘岡和夫、熊野良子、西村司:沿岸 海水流動シミュレーションに対する新しい多重ネスティン グ計算法の開発、土木学会論文集、2003(投稿中).
- 7日祐嗣,池田駿介,西亮樹: PIV の実河川流速計測への 適用性に関する研究,河川技術論文集,第7巻,pp.479-484, 2001.
- 高木幹雄,下田陽久:画像解析ハンドブック,東京大学出版, pp.423-429, 1991.
- 10) 肥後竹彦,高杉由夫,佐藤一紘,渡嘉敷義浩:マングロー ブ水域の流動・堆積環境特性 -石垣島吹通川の流動・堆 積環境-,「マングローブ林を中心とした生態系の解明に関 する研究」成果報告書, pp.63-78, 1993.
- 二瓶泰雄,佐藤慶太,青木康哲,西村司,灘岡和夫:ネス ティング計算法を用いた吹通川マングローブ水域における 高解像度流動シミュレーション,海岸工学論文集, Vol.49, No.1, pp.416-420, 2002.

(2003.4.11 受付)