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ABSTRACT 
 
To examine the influences of a hydrostatic approximation on the 
numerical accuracy of coastal current simulations, we have performed 
the computation for a vertical 2-D density front under a wide range of 
grid resolutions. For this purpose, we use the numerical models with 
and without the hydrostatic approximation. The computational results 
indicate that the differences of density-front structures appear 
appreciably in the hydrostatic and non-hydrostatic models and 
furthermore are strongly dependent on the horizontal grid resolutions. 
It is also found that the evaluation of a hydrodynamic pressure is a 
crucial importance on the numerical accuracy in the non-hydrostatic 
model. 
 
KEY WORDS: Hydrostatic approximation; non-hydrostatic model; 
coastal current simulation; density front; grid resolution. 
 
INTRODUCTION 
 
Although coastal current simulations have frequently been performed 
in various flow fields, numerical models for coastal ocean current are 
usually based on several simplifications and approximations for 
turbulence models, coordinate systems, vertical fluid motion and etc 
(e.g., Haidvogel and Beckmann, 1998). It is therefore required to 
examine the influence of these simplifications on coastal current 
simulations. In most numerical models, the hydrostatic approximation, 
one of these simplifications in numerical models, is used for a vertical 
fluid motion (e.g., Blumberg and Mellor, 1983), because a horizontal 
length scale of fluid motion is much larger than a vertical length scale. 
However the coastal currents in which the vertical fluid motion is 
important exist such as coastal fronts, and hence we need to 
understand the influence of the hydrostatic approximation on coastal 
current simulations. Although previous studies have been conducted 
for this purpose (e.g., Causulli & Stelling, 1999; Kinoshita, 2001), the 
numerical accuracy of the hydrostatic approximation under a variety 
of computational conditions has been poorly investigated.  
 
In the present study, we have attempted to study the influences of the 
hydrostatic approximation on computational results of coastal current 
simulations. For this purpose, we have done the computations for a 

vertical 2-dimensional gravity front, so called ‘lock exchange 
problem’ (Turner, 1973) under a wide range of grid resolutions by 
using numerical models for coastal current with and without the 
hydrostatic approximation.  
 
COMPUTATIONAL METHOD 
 
Outline of present method 
 
To clarify the computational performance of the hydrostatic 
approximation in coastal current simulations, in the present study, we 
employ two numerical models for coastal current simulations with and 
without the hydrostatic approximation. The 3D numerical models with 
and without the hydrostatic approximation used here are referred to as 
‘hydrostatic model’ and ‘non-hydrostatic model’, respectively. In the 
hydrostatic model, the governing equations are composed of the 
conservation of mass and momentum in the horizontal direction, and 
then the vertical velocity is evaluated with the continuity equation. On 
the other hand, in the non-hydrostatic model, we adopt the horizontal 
and vertical momentum equations and the Poisson equation for a 
pressure. Both the numerical models are based on the Boussinesq 
approximation, a sigma-coordinate system (Philips, 1957) and the 
smagorinsky model as a turbulence model. For reducing 
computational load, we apply a mode splitting technique, which 
divides the flow into baroclinic and barotropic (vertically averaged) 
modes. It should be noted that, for numerical accuracy, the pressure in 
the non-hydrostatic model is separated into hydrostatic and 
hydrodynamic pressure components, sp  and dp , respectively, the 
latter being calculated with the Poisson equation. 
 
Governing equations 
We shall outline the governing equations in the hydrostatic and 
non-hydrostatic models in the following. In the hydrostatic model, we 
adopt the continuity and horizontal momentum equations as given by 
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where u , v, and w represent the velocity components in the horizontal 
(x and y) and vertical ( σ ) directions, respectively, D and 0ρ  mean a 
total depth and reference density, respectively, xF  and yF  are the 
turbulent diffusion terms of the momentum in the horizontal direction 
and f denotes the Colioris parameter. sxP  and syP  in Eq. 2 mean 
the hydrostatic pressure gradients in x and y directions, respectively, 
as expressed in the form 
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where ρ ′  means a density anomaly defined as in situ density minus 
the reference density 0ρ  and g denotes the gravitational 
acceleration.  
 
In the non-hydrostatic model, we evaluate the horizontal and vertical 
components of the velocity, u , v and w  with the horizontal and vertical 
momentum equations, respectively, given as 
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where σF  is the turbulent diffusion term of the momentum in σ  
direction and w′  is defined as 
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We compute the hydrodynamic pressure using the Poisson equation, 
which is derived with the continuity equation.  
 
In computing the density, we use the conservation of the density 
difference ρ ′  in both the models to reduce truncation errors in the 
computations. The equation for the density anomaly ρ ′  is 
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where ρ ′F  represents the turbulent diffusion term of the density 
anomaly. 
 
The above governing equations are computed with a finite difference 
method. We use here 3rd order upwind and 2nd order central 
differences for the advection term and the other spatial derivative 

terms, respectively. A fractional step method (Cholin, 1968) is applied 
in the computation with the non-hydrodynamic model, in which the 
hydrodynamic pressure is calculated simultaneously with the 
velocities. 
 
COMPUTATION OF A 2-D VERTICAL GRAVITY FRONT 
 
Computational conditions 
 
To investigate widely the influences of the hydrostatic approximation 
on coastal current simulations, we have performed the computation 
for a lock exchange problem (Turner, 1973), as a representative 
example of vertical 2-D gravity front problems. In the computation, 
two water columns with different densities are initially divided with a 
water gate in the center of a rectangular computational region as 
shown in Fig. 1 and, after the water gate has been opened, the water 
masses with relatively lower and higher density flow out along surface 
and bottom boundaries, respectively.  
 
Table 1 represents two computational conditions for the lock 
exchange problem. The first condition in the table (case1) is in line 
with the condition of a laboratory experiment done by Akahori et al. 
(1999) who studied dynamic evolution of density fronts in the lock 
exchange problem. In the computation for case1, we may check the 
numerical accuracy of the present numerical model through the 
comparison of the computational and experimental results. We also 
clarify the fundamental features of density-front structures computed 
with the hydrostatic and non-hydrostatic models. The condition of 
case2 is used to investigate how grid resolutions affect on 
computational accuracy of the hydrostatic and non-hydrostatic models. 
The Coliolis parameter f is set to be zero for simplicity. 
 
We apply logarithmic law and slip conditions at the bottom and 
surface boundaries, while a slip-wall condition is employed at the 
other boundaries. At the initial condition, the density distribution is 
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Fig. 1 Initial density distribution for the numerical simulation of a 
lock exchange problem. 

 
 
Table 1 Computational conditions. 

 

Case 1 Case 2

Xmax 1.0 m 400.0 m
H 0.155 m 10.0 m

1ρ

2ρ
1000.0 kg/m3 1000.0 kg/m3

1033.0 kg/m3 1005.0 kg/m3

1/15.5Hx∆ 1/10, 1/5, 2/5, 1/2, 4/5
1.0, 1.6, 2.0, 2.5, 4.0

Hz∆ 1/30 1/20, 1/15, 1/10

Case 1 Case 2

Xmax 1.0 m 400.0 m
H 0.155 m 10.0 m

1ρ

2ρ
1000.0 kg/m3 1000.0 kg/m3

1033.0 kg/m3 1005.0 kg/m3

1/15.5Hx∆ 1/10, 1/5, 2/5, 1/2, 4/5
1.0, 1.6, 2.0, 2.5, 4.0

Hz∆ 1/30 1/20, 1/15, 1/10
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imposed as shown in Fig.1 and a still water condition is assumed. 
 
Fundamental features of front structures computed with both the 
models 
 
To show the differences of the computational results of front 
structures in the hydrostatic and non-hydrostatic models, the 
instantaneous velocity vectors and the density distributions at t=2.0s 
and 4.0s in the computation for case1 are indicated in Fig. 2. The 
computational results of the non-hydrostatic model, as shown in Fig. 
2(a), reveal that, at t=2.0s, the rounded fronts proceed horizontally 
along the surface and bottom boundaries and then, at t=4.0s, distinct 
large eddies appear near the interface between upper and lower layers, 
causing a vertical mixing of the density between both the layers. 
These front structures and large eddy motions near the interface 
computed with the non-hydrostatic model give acceptable agreements 
with those obtained by the laboratory experiment (Akahori et al., 
1999), demonstrating the fundamental validity of the present 
numerical model.  
 
The computational results of the hydrostatic model, as depicted in Fig. 
2(b), represent that the vertical velocities appear noticeably near the 
fronts and the corresponding front structures become much steeper. 
The strong vertical currents also cause the appreciable vertical mixing 

of the density behind the fronts. These differences of the front 
structures in the computational results with the hydrostatic and 
non-hydrostatic models demonstrate that the hydrostatic 
approximation affects considerably on the computational results of the 
density fronts and hence may decrease the computational performance 
in coastal current simulations. 
 
Influences of grid resolutions on computational accuracy  
 
Although the computational results in the hydrostatic model are 
markedly different with those in the non-hydrostatic model as 
described in the above, these differences are influenced with a grid 
resolution in numerical simulations (Kinoshita, 2001). To clarify the 
quantitative and detailed dependence of the grid resolution on the 
numerical accuracy of each model, we have performed the 
computation for case2, in which we change the computational grid 
sizes widely as shown in Table 1. Figure 3 illustrates the front 
structures at t=200s in the computations where three different 
horizontal grid resolutions ( =∆ Hx 0.1, 1.0 and 2.0) are used with 
the finest vertical grid resolution ( Hz∆ =1/20). In the case with the 
finest resolution ( =∆ Hx 0.1), the computed front structures in both 
the models are qualitatively similar to those in case1. It is evident 
from the figure that, as the horizontal grid size increases, the 
differences of the computed front structure in the hydrostatic and 
non-hydrostatic models reduce remarkably; the non-hydrostatic model 
may not express the front structure sharply in lower horizontal grid 
resolution. On the other hand, the hydrostatic model describes more 
rounded front structures without strong vertical velocities near the 
front in the case of relatively coarser horizontal grid resolution. It 
should be also noted that the speed of the front evolution is slower in 
each model as the horizontal grid resolution is lower.  
 
To investigate the dependence of vertical grid resolutions on the 
computational performance, Fig. 4 indicates the computational results 
of the front structures in the computations with two different vertical 
grid resolutions ( Hz∆ =1/15 and 1/10) at t=200s. The horizontal grid 
resolution is set at =∆ Hx 0.1 here. From the figure and the upper 
figure in Figs. 3(a) & 3(b), it is apparent that although the locations of 
density front s are not different in these computations, the vertical 
mixing of the density are more dominant as the vertical grid size 
become larger. We can also find from these results that in the 
non-hydrostatic model with the lowest vertical grid resolution 
( Hz∆ =1/10), a series of large eddies does not appear near the 
interface between upper and lower layers.  
 
To compare quantitatively the performance of the hydrostatic and 
non-hydrostatic models, we shall evaluate the speed of the front 
evolution, which is given experimentally by Turner (1973) as 
 

HgU e ′= 44.0 ,                                       (7) 
 
where eU  denotes the experimental front speed, H is the water depth 
and g ′ means the reduced gravity ( gg ε=′ , 0ρρε ∆= ). Figure 5 
depicts the computed front speed cU  normalized with the 
experimental front speed eU , indicating that the normalized front 
speed in both the models decreases as the horizontal grid size 
increases, and furthermore this reduction of the numerical accuracy 
become larger in the non-hydrostatic model than in the hydrostatic 
model. It is noteworthy that the vertical grid size may not influence 
considerably the computational accuracy for the front speed, being 
accordance with the results of the front structure as shown in Fig.4.  
 
To examine the cause of this dependence of the horizontal grid 
resolution on the computational accuracy for the front speed as 
described above, we shall pay attention to the hydrodynamic pressure 
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(a) Non-hydrostatic model 
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(b) Hydrostatic model 

Fig. 2 Computational results of front structures in case1. 
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dP , which is not incorporated into the hydrostatic model. Figure 6 
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(a) Non-hydrostatic model 
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(b) Hydrostatic model 
Fig.3 Influence of horizontal grid resolutions on the computational results at t=200s in case2 ( Hz∆ =1/20, contour interval: 1.0kg/m3). 
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indicates the second derivatives of dp  with respect to x and z, dP , 
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(a) Non-hydrostatic model 
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(b) Hydrostatic model 
Fig.4 Influence of vertical grid sizes on the computational results at t=200s in case2 ( =∆ Hx 0.1, contour interval: 1.0kg/m3).  
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dP ,which is not incorporated into the hydrostatic model. Figure 6 
indicates the second derivatives of dp  with respect to x and z, 

22 xpd ∂∂  and 22 zpd ∂∂ , which are involved in the Poisson 
equation. These derivative terms are spatially averaged over the whole 
computational domain at t=300s. This figure exhibits that both the 
terms decrease appreciably as the horizontal resolution become 
coarser, and the reduction becomes larger in 22 xpd ∂∂  than in 

22 zpd ∂∂ . When Hx /∆  is larger than unity, 22 xpd ∂∂  equals 
almost zero, indicating that the differences between the hydrostatic 
model and the non-hydrodynamic model are not clear in the relatively 
coarser grid resolution. These facts demonstrate that the numerical 
accuracy for the hydrodynamic pressure is remarkably dependent on 
the horizontal grid resolutions and hence the numerical accuracy of 
the non-hydrody namic model decreases with the increase of the 
horizontal grid size due to lower performance of the calculation for 
the hydrodynamic pressure.  
 
CONCLUSIONS 
 
To investigate the influences of the hydrostatic approximation on the 
performance of the coastal current simulations, in the present study, 
we have done the numerical simulation for the lock exchange problem, 
one of vertical 2-D gravity fronts, under a wide range of grid 
resolutions. The computational results with the finest grid resolution 
indicate that while the non-hydrostatic model can express rounded 
front structures as observed in the laboratory experiment (Akahori et 
al., 1999), the hydrostatic model gives steeper fronts with strong 
vertical currents near the fronts. It is evident through the computations 
under various grid resolutions that the differences of the 
computational results in both the models become much smaller as the 
horizontal grid resolution become larger, indicating the crucial 

dependence of the horizontal grid resolutions on the computational 
accuracy in each model. We also clarify that the performance of the 
non-hydrostatic model is significantly related to the numerical 
accuracy for the evaluation of a hydrodynamic pressure. 
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