Compton profile calculation using the FLAPW-code BANDS01

Akio Kodama^a, Takashi Kodama^b and Noriaki Hamadab

^a Frontier Science and Technology, Fuji Research Institute Corporation

^a Department of Physics, Faculty of Science and Technology, Science University of Tokyo

abstract

Within the impulse approximation the spin dependent directional Compton profile is given by

$$J_{\hat{\boldsymbol{q}}}^{\sigma}(p_q) = \int_{-\infty}^{\infty} d^3\boldsymbol{p} \, \gamma^{\sigma}(\boldsymbol{p}) \delta(\boldsymbol{p} \cdot \hat{\boldsymbol{q}} - p_q) \qquad \sigma = \uparrow, \downarrow$$

where \boldsymbol{q} is the scattering vector and $\gamma^{\sigma}(\boldsymbol{p})$ is the electron momentum density with spin σ . Using a lattice harmonics expansion of the electron momentum density[1], one obtains

$$J_{\hat{\boldsymbol{q}}}^{\sigma}(p_q) = 2\pi \sum_{\ell=0}^{\ell_{end}} \sum_{\mu=1}^{\mu_{end}(\ell)} \int_{|p_q|}^{p_{max}} p dp \, \gamma_{\ell\mu}^{\sigma}(p) P_{\ell}(\frac{p_q}{p}) F_{\ell\mu}(\theta_q, \phi_q)$$

where $\gamma_{\ell\mu}^{\sigma}(p)$ is the expansion coefficients, P_{ℓ} is the Legendre polynomial of order ℓ , $F_{\ell\mu}$ is the lattice harmonics, ℓ_{end} is the cutoff angular momentum and p_{max} is the cutoff momentum.

We shall show the magnetic Compton profiles (MCP) of Fe and $La_{2-2x}Sr_{1+2x}Mn_2O_7$. First of all, in order to check the dependence of parameters and the accuracy of our approximation, we calculate the MCP of iron and compare with the experiment [2] and other theoretical calculation [3]. A good agreement between our calculation and the experiment [2] is found in the MCP's along many directions. Next, we calculate the directional MCP's of $La_{2-2x}Sr_{1+2x}Mn_2O_7$ at x=0.35 and 0.42 along the [100], [110] and [001] directions using a virtual crystal approximation. Our LSDA+U calculations show an excellent agreement with experimental data[4].

References

- [1] P.E.Mijnarends, Phys. Rev. 160 (1967) 512.
- [2] Y. Tanaka, N. Sakai, Y. Kubo and H. Kawata, Phys. Rev. Lett. <u>70</u> (1993) 1537.
- [3] Y. Kubo and S. Asano, Phys. Rev. B <u>42</u> (1990) 4431.
- [4] A. Koizumi, S. Miyake, Y. Kakutani, H. Koizumi, N. Hiraoka, K. Makoshi, N. Sakai, K. Hirota and Y. Murakami, Phys. Rev. Lett. <u>86</u> (2001) 5589.